Теорема об абс сход рядов.
{Т}если Σn=1|an | сходится то ряд Σn=1an сх абсолютно. {Д} рассмотрим ряды Σn=1Un и Σn=1Vn где Un=|an|+an/2 Vn=|an|-an/2 можно проверить что Un<=|an| и Vn=<|an| по признаку сравн в ф-ме неравенства т.к ряд Σn=1|an | сход по услов то Σn=1Un и Σn=1Vn также сходятся. an=Un-Vn Σn=1an= Σn=1(Un-Vn) по св-ву 1)(см ниже) рядов ряд Σn=1(Un-Vn) сходится, т.е сходится ряд Σn=1an (пример Σn=1sin(n)/n2-см по модулю-дост призн ого- сход абс.) {св-ва} 1) сумма абсолютно сходящегося ряда рвна алгебр сумме его положит м отриц членов. Для усл сход ряда это наверно. 2)В абс сходящемся ряде члены ряда можно переставлять как угодно от этого смма ряда не измениться. В условно сход ряде перестановка членов может изменить сумму ряда или сделать его расх.(пример Σn=1(-1)n1/n – сход условно.)
- Числ послед и пределы
- Опред ряда частн суммы ряда.
- Необх признак сход ряда.
- Критерий сход знакопост рядов.
- Интегральн признак сход.
- Призр срав в ф-ме нерав.
- Призр срав в ф-ме рав.
- Призн Деламбера ф-ме нерав.
- Призн Деламбера в пред ф-ме.
- Признак Коши в ф-ме нерав и в пред ф-ме.
- Абсолют и усл сход рядов.
- Теорема об абс сход рядов.
- Знакочеред ряды признак лейбница.
- Функц ряды.
- Форм св-ва равномер сход рядов.
- Степ ряд т Абеля
- Интегр и дофф степ рядов.
- Разл ф-ции в степ ряд Ряд тейтора.
- Условие разлож ф-ции в ряд Тейлора.
- Методы разл в ряд Тейлора.
- Опред ортогональ сист на отрезке.
- Ряд фурье по орто сист ф-ций на отрезке. Формулы коэфф.
- Переод ф-ции и их св-ва.
- Теорема Дирихле.
- Разлож в ряд фурье по sin и cos.
- Ряд фурье в комплексной ф-ме.
- Интеграл фурье в действ ф-ме.
- Интеграл фурье в комплекс форме.