shpora_ryady
Разл ф-ции в степ ряд Ряд тейтора.
Σn=0сnxn=f(x) f(x)=Σn=0сn(x-x0)n в нек окрестн точки x0 f(x)=с0+с1(x-x0)+c2(x-x0)2+c3(x-x0)3+… при x=x0 имеем f(x0)=с0 f'(x)=с1+2с2(x-x0)+c2(x-x0)+3c3(x-x0)2+… x=x0 f'(x0)=с1 f''(x0)=2с2+3*2c3(x-x0)+… x=x0 f''(x0)=2с2 f'''(x0)=3*2c3+… x=x0 f'''(x0)=3*2c3 c0=f(x0) ; c1=f'(x0)/1! ; с2=f''(x0)/2! ;…;сn=fn(x0)/n!, f(x)=Σn=0fn(x0)(x-x0)n/n! Если ряд в правой части сх к ф-ции f(x) то ряд наз рядом тейлора в окресности x0 ф-ла тейлора f(x)=Σn=0fk(x0)(x-x0)n/k!+Rn(x)
Содержание
- Числ послед и пределы
- Опред ряда частн суммы ряда.
- Необх признак сход ряда.
- Критерий сход знакопост рядов.
- Интегральн признак сход.
- Призр срав в ф-ме нерав.
- Призр срав в ф-ме рав.
- Призн Деламбера ф-ме нерав.
- Призн Деламбера в пред ф-ме.
- Признак Коши в ф-ме нерав и в пред ф-ме.
- Абсолют и усл сход рядов.
- Теорема об абс сход рядов.
- Знакочеред ряды признак лейбница.
- Функц ряды.
- Форм св-ва равномер сход рядов.
- Степ ряд т Абеля
- Интегр и дофф степ рядов.
- Разл ф-ции в степ ряд Ряд тейтора.
- Условие разлож ф-ции в ряд Тейлора.
- Методы разл в ряд Тейлора.
- Опред ортогональ сист на отрезке.
- Ряд фурье по орто сист ф-ций на отрезке. Формулы коэфф.
- Переод ф-ции и их св-ва.
- Теорема Дирихле.
- Разлож в ряд фурье по sin и cos.
- Ряд фурье в комплексной ф-ме.
- Интеграл фурье в действ ф-ме.
- Интеграл фурье в комплекс форме.