shpora_ryady
Форм св-ва равномер сход рядов.
{O}Если ряд Σn=1Un(x) (1) у которого все Un(x) непрер ф-ции на [a b] сход равн на [a b] то сумма ряда будет непрер ф-цией на [a b] 2) если ряд (1) составленный из непрерывных ф-ций на [a b] сх равном на [a b] то такой ряд можно почленно интегрир т.е из Σn=1Un(x) Σn=1abUn(x)dx=bS(x)dx x[a b] 3) Если ряд (1) сх на [a b] т.е Σn=1Un(x)=S(x) а ряд Σn=1U'n(x) сх равномерно на [a b] то справндливо равенство Σn=1U'n(x)=S'(x)
-
Содержание
- Числ послед и пределы
- Опред ряда частн суммы ряда.
- Необх признак сход ряда.
- Критерий сход знакопост рядов.
- Интегральн признак сход.
- Призр срав в ф-ме нерав.
- Призр срав в ф-ме рав.
- Призн Деламбера ф-ме нерав.
- Призн Деламбера в пред ф-ме.
- Признак Коши в ф-ме нерав и в пред ф-ме.
- Абсолют и усл сход рядов.
- Теорема об абс сход рядов.
- Знакочеред ряды признак лейбница.
- Функц ряды.
- Форм св-ва равномер сход рядов.
- Степ ряд т Абеля
- Интегр и дофф степ рядов.
- Разл ф-ции в степ ряд Ряд тейтора.
- Условие разлож ф-ции в ряд Тейлора.
- Методы разл в ряд Тейлора.
- Опред ортогональ сист на отрезке.
- Ряд фурье по орто сист ф-ций на отрезке. Формулы коэфф.
- Переод ф-ции и их св-ва.
- Теорема Дирихле.
- Разлож в ряд фурье по sin и cos.
- Ряд фурье в комплексной ф-ме.
- Интеграл фурье в действ ф-ме.
- Интеграл фурье в комплекс форме.