logo search
Лекции Методы оптимальных решений

5.1. Общая и основная задачи линейного программирования

К математическим задачам линейного программирования приводят исследования конкретных производственно-хозяйственных ситуаций, которые в том или ином виде интерпретируются как задачи об оптимальном использовании ограниченных ресурсов (задача о раскрое, смесях и т.д.).

Во всех этих задачах требуется найти максимум или минимум линейной функции при условии, что ее переменные принимают неотрицательные значения и удовлетворяют некоторой системе линейных уравнений или линейных неравенств либо системе, содержащей как линейные неравенства, так и линейные уравнения. Каждая из этиx задач является частным случаем общей задачи линейного программирования.

Oбщей задачей линейного программирования называется задача, которая coстоит в определении максимального (минимального) значения функции:

(5.1)

при условии:

(5.2)

(5.3)

Xj 0 (j=1, 1; 1 n) (5.4)

где aij, bi, сj - заданные постоянные величины и k m.

 Функция (5.1) называется целевой функцией (или линейной формой) задачи (5.1)-(5.4), а условия (5.2)-(5.4) - ограничениями данной задачи.

Стандартной (или симметричной) задачей линейного программирования называется задача, которая состоит в определении максимального значения функции (5.1) при выполнении условий (5.2) и (5.4), где k=m и 1=n.

Канонической (или основной) задачей линейного программирования называется задача, которая состоит в определении максимального значения функции (5.1) при выполнении условий (5.3) и (5.4), где k=0 и 1=n.

 Совокупность чисел Х = (x1, x2, ..., xn), удовлетворяющих ограничениям задачи (5.2)-(5.4), называется допустимым решением (или планом).

 План Х = (x1, x2, ..., xn), при котором целевая функция задачи (5.1) принимает свое максимальное (минимальное) значение, называется оптимальным.

значение целевой функции (5.1) при плане X будем обозначать через F(X). Следовательно, Х - оптимальный план задачи, если для любого X выполняется неравенство F(X) F(Х) (соответственно F(X) F(Х)).