logo search
Комбинаторика (Под_курсы) 2

Свойства размещений и перестановок

Рассмотрим задачи, связанные со свойствами размещений и перестановок.

Пример 6.1. Вычислить

.

Решение. Поскольку

и

,

то

.

Пример 6.2. Упростить выражение

(n  6).

Решение. Поскольку

, ,

,

,

то

.

Пример 6.3. Решить неравенство

.

Решение. Из условия задачи следует, что n1 и n. Поскольку

, ,

то

и данное в условии неравенство равносильно неравенству

.

Пусть n2, тогда , т.е. 20<15. Противоречие, следовательно,n=1 не является решением данного неравенства.

Пусть n=1, тогда исходное неравенство равносильно следующему

,

Отсюда следует, что первоначальное неравенство имеет три решения:

n1=3, n2=4 и n3=5.

Упражнения

6.1. Вычислить: а) , б).

Ответ: а) 46, б) 80.

6.2. Упростить: .

Ответ: .

6.3. Решить неравенство .

Ответ: .

6.4. Найти все натуральные n, удовлетворяющие условию:

а) , б), в).

Ответ: а) 4, б) 4, в) 10.

6.5. Доказать, что .