Выбор задачи - важнейший вопрос. Какие основные требования должна удовлетворять задача? Таких требований два:
должно существовать, как минимум, два варианта ее решения (ведь если вариант один, значит и выбирать не из чего);
надо четко знать в каком смысле искомое решение должно быть наилучшим (кто не знает, куда ему плыть - тому нет и попутного ветра).
Выбор задачи завершается ее содержательной постановкой. Когда производится содержательная постановка задачи, к ней привлекаются специалисты в предметной области. Они прекрасно знают свой конкретный предмет, но не всегда представляют, что требуется для формализации задачи и представления ее в виде математической модели.
Хорошую модель составить не просто. Известный математик Р.Беллман сказал так: «Если мы попытаемся включить в нашу модель слишком много черт действительности, то захлебнемся в сложных уравнениях; если слишком упростим ее, то она перестанет удовлетворять нашим требованиям». Таким образом, исследователь должен пройти между западнями Переупрощения и болотом Переусложнения. Для выполнения успеха моделирования надо выполнить три правила, которые, по мнению древних, являются признаками мудрости. Эти правила применительно к задачам математического моделирования и формулируются так: учесть главные свойства моделируемого объекта; пренебрегать его второстепенными свойствами; уметь отделить главные свойства от второстепенных.
Составление модели - это искусство, творчество. Древние говорили: «Если двое смотрят на одно и то же, это не означает, что оба видят одно и то же». И слова древних греков: «Если двое делают одно и то же, это не значит, что получится одно и то же». Эти слова в полной мере относятся к составлению математических моделей. Если математическая модель - это диагноз заболевания, то алгоритм - это метод лечения.
- 1. Моделирование экономических систем. Основные понятия и определения.
- 1.1. Возникновение и развитие системных представлений
- 1.2. Модели и моделирование. Классификация моделей
- В настоящее время для постижения истины существует 3 пути:
- 1.3. Виды подобия моделей
- 1.4. Адекватность моделей
- 2. Математические модели и методы их расчета
- 2.1. Понятие операционного исследования
- Выбор задачи - важнейший вопрос. Какие основные требования должна удовлетворять задача? Таких требований два:
- Можно выделить следующие основные этапы операционного исследования:
- 2.2. Классификация и принципы построения математических моделей Можно выделить следующие основные этапы построения математической модели:
- Перечислим некоторые основные принципы построения математической модели:
- 3. Некоторые сведения из математики
- 3.1. Выпуклые множества
- 3.2. Линейные неравенства
- 3.3. Значения линейной формы на выпуклом множестве
- 4. Примеры задач линейного программирования
- 4.1. Транспортная задача
- 4.2. Общая формулировка задачи линейного программирования
- Дана система линейных уравнений:
- 4.3. Графическая интерпретация решения задач линейного программирования
- Возможны следующие варианты:
- 5. Методы решения задач линейного программирования
- 5.1. Общая и основная задачи линейного программирования
- 5.2. Геометрический метод решения задач линейного программирования
- Тот факт, что оптимальное решение находится в одной из вершин многоугольника одр, позволяет сделать еще два важных вывода:
- Этапы нахождения решения задачи линейного программирования:
- 5.3. Графическое решение задачи распределения ресурсов
- Составим математическую модель задачи.
- Метод решения задачи линейного программирования:
- Тот факт, что оптимальное решение находится на вершине одр, дает еще два очень важных вывода:
- 5.4. Симплексный метод
- Симплексная таблица строится следующим образом:
- 5.5. Анализ симплекс-таблиц
- 5.6. Решение транспортных задач
- 6. Методы нелинейного программирования и многокритериальной оптимизации
- 6.1. Постановка задачи нелинейного программирования
- 6.2. Постановка задачи динамического программирования. Основные условия и область применения.
- Таким образом, при выборе шагового управления необходимо учитывать:
- 6.3. Многокритериальная оптимизация
- Три основные части задачи многокритериальной оптимизации:
- Математические методы определения экспертных оценок: