Теория двойственности.
Любой задаче линейного программирования можно сопоставить сопряженную или двойственную ей задачу. Причем, совместное исследование этих задач дает, как правило, значительно больше информации, чем исследование каждой из них в отдельности.
Любую задачу линейного программирования можно записать в виде
Первоначальная задача называется исходной или прямой.
Модель двойственной задачи имеет вид:
Переменные двойственной задачи называют объективно обусловленными оценками или двойственными оценками.
Связь исходной и двойственной задач заключается, в частности, в том, что решение одной из них может быть получено непосредственно из решения другой. Каждая из задач двойственной пары фактически является самостоятельной задачей линейного программирования и может быть решена независимо от другой.
Двойственная задача по отношению к исходной составляется согласно следующим правилам:
целевая функция исходной задачи формулируется на максимум, а целевая функция двойственной задачи – на минимум, при этом в задаче на максимум все неравенства в функциональных ограничениях имеют вид , а в задаче на минимум – вид ;
матрица составленная из коэффициентов при неизвестных в системе ограничений исходной задачи, и аналогичная матрица в двойственной задаче получаются друг из друга транспонированием;
Число переменных в двойственной задаче равно числу функциональных ограничений исходной задачи, а число ограничений в системе двойственной задачи – числу переменных в исходной задаче;
Коэффициентами при неизвестных в целевой функции двойственной задачи являются свободные члены в системе ограничений исходной задачи, а правыми частями в ограничениях двойственной задачи – коэффициенты при неизвестных в целевой функции исходной задачи;
Каждому ограничению одной задачи соответствует переменная другой задачи: номер переменной совпадает с номером ограничения; при этом ограничению, записанному в виде неравенства , соответствует переменная, связанная условием неотрицательности. Если функциональное ограничение исходной задачи является равенством, то соответствующая переменная двойственной задачи может принимать как положительные, так и отрицательные значения.
Математические модели пары двойственных задач могут быть симметричными и несимметричными. В несимметричных двойственных задачах система ограничений исходной задачи задается в виде равенств, а двойственной – в виде неравенств, причем переменные в двойственной задаче могут быть и отрицательными. В симметричных двойственных задачах система ограничений как исходной, так и двойственной задачи задается в виде неравенств, причем на двойственные переменные налагается условие неотрицательности.
Исходная задача | Двойственная задача |
Симметричные пары | |
|
|
|
|
Несимметричные пары | |
|
|
|
|
где
, .
,
Рассмотрим пример, показывающий, как в реальной экономической ситуации появляются взаимно двойственные задачи линейного программирования.
На некотором предприятии после выполнения годового плана возник вопрос: как поступить с остатками сырья? Из оставшегося сырья можно наладить производство продукции и реализовать его или продать сырье.
Предположим, что имеется два вида сырья и , остатки которого составляют соответственно 35 и 20 единиц. Из этого сырья можно наладить производство трех видов товаров: , и .
Виды товаров |
|
| Прибыль |
| 1 | 2 | 7 |
| 1 | 1 | 6 |
| 5 | 2 | 18 |
Запасы | 35 | 20 |
|
При исследовании первой возможности (наладить выпуск товаров , и ) возникает вопрос о плане выпуска, который задается тремя переменными , и , которые соответствуют количеству произведенного товара. Эти переменные должны удовлетворять условиям:
Прибыль, которую получит предприятие от реализации товара, составит
В интересах предприятия эту прибыль максимизировать.
Это прямая задача.
Объективно обусловленными оценками двойственной задачи и будут цены по которым целесообразно продавать излишки сырья, т.е. при продаже сырья по ценам ниже и предприятие будет терпеть убытки.
Справедливое требование со стороны продающего предприятия состоит в следующем: если взять сырье, идущее на производство единицы товара , то выручка от его продажи должна быть не меньше, чем прибыль от реализации готового изделия (в противном случае нет смысла продавать сырьё – целесообразнее изготовить товар и получить прибыль от его реализации).
Это требование можно представить в виде системы неравенств:
В левой части каждого неравенства предполагаемая выручка от продажи сырья, необходимого для производства единицы товара , а в правой – прибыль от реализации этой единицы товара.
Что касается покупателя, то он заинтересован в минимизации расходов на покупку сырья, т.е. величины .
- А кадемия управления при Президенте Республики Беларусь
- Курс лекций
- Введение Лекция 1. Основы математической логики
- Высказывания и логические связки
- Контрольные вопросы к теме:
- Элементарная математика Лекция 2. Элементы теории множеств.
- Основные понятия.
- Основные операции над множествами
- Отображения.
- Отношения эквивалентности и упорядоченности
- Контрольные вопросы к теме
- Лекция 3. Числовые множества.
- Основные понятия
- Соединения. Бином Ньютона.
- Комплексные числа
- Операции над комплексными числами
- Формула Муавра. Извлечение корня из комплексного числа.
- Контрольные вопросы к теме
- Аналитическая геометрия
- Лекция 4. Векторы
- Основные понятия
- Линейные операции над векторами
- Проекция вектора на ось
- Линейная зависимость векторов
- Базис. Координаты вектора в базисе
- Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении
- Направляющие косинусы
- Скалярное произведение
- Векторное произведение
- Смешанное произведение
- Контрольные вопросы к теме
- Лекция 5. Прямая
- Основные понятия
- Взаимное расположение прямых
- Контрольные вопросы к теме
- Лекция 6. Плоскость
- Основные понятия
- Нормальное уравнение плоскости
- Взаимное расположение плоскостей
- Контрольные вопросы к теме
- Лекция 7. Кривые второго порядка
- Гипербола
- Парабола
- Исследование на плоскости уравнения второй степени
- Контрольные вопросы к теме
- Линейная алгебра Лекция 8. Понятие евклидова пространства.
- – Мерные векторы
- Коллинеарные векторы
- Размерность и базис векторного пространства
- Контрольные вопросы к теме
- Лекция 9. Матрицы
- Основные понятия
- Операции над матрицами
- Определитель матрицы
- Ранг матрицы
- Обратная матрица
- Контрольные вопросы к теме
- Лекция 10. *Понятие линейного оператора*
- Переход к новому базису
- Линейное преобразование переменных
- Собственные значения и собственные вектора матриц
- Контрольные вопросы к теме
- Лекция 11. Многочлены
- Основные понятия
- Теорема о делении с остатком.
- Теорема Безу.
- Контрольные вопросы к теме
- Понятие квадратичной формы.
- Канонический базис квадратичной формы
- Канонический базис из собственных векторов матрицы квадратичной формы
- Канонический базис Якоби квадратичной формы .
- Положительно и отрицательно определенные квадратичные формы
- Квадратичная форма положительно определена тогда и только тогда, когда , ,…, .
- Квадратичная форма отрицательно определена тогда и только тогда, когда , ,…, .
- Квадратичная форма положительно определена тогда и только тогда, когда все собственные значения матрицы положительны.
- Квадратичная форма отрицательно определена тогда и только тогда, когда все собственные значения матрицы отрицательны
- Квадратичная форма положительно определена тогда и только тогда, когда главные миноры матрицы положительны.
- Квадратичная форма отрицательно определена тогда и только тогда, когда главные миноры матрицы четного порядка положительны, а главные миноры матрицы нечетного порядка отрицательны.
- Применение квадратичных форм к исследованию кривых второго прядка.
- Контрольные вопросы к теме
- Лекция 13. Системы линейных уравнений
- Основные понятия
- Критерий совместности системы линейных уравнений
- Правило Крамера решения систем линейных уравнений
- Метод Гаусса
- Однородные системы уравнений.
- Разрешенные системы линейных уравнений
- Можно построить решение системы уравнений, у которого значения свободных переменных будут равны соответственно ;
- Если у решений и системы уравнений значения свободных переменных совпадают, то и сами решения совпадают.
- Контрольные вопросы к теме
- Лекция 14. *Основы линейного программирования*
- Линейное программирование
- Задача линейного программирования
- Приведение общей задачи линейного программирования к канонической форме.
- Множества допустимых решений
- Опорное решение задачи линейного программирования, его взаимосвязь с угловыми точками.
- Симплекс-метод с естественным базисом.
- Симплексный метод с искусственным базисом (м-метод).
- Теория двойственности.
- Теоремы двойственности
- Контрольные вопросы к теме
- Экзаменационные вопросы
- Литература