Глава 5. Основы комбинаторики
Комбинаторика изучает количества комбинаций, подчиненных определенным условиям, которые можно составить из элементов заданного конечного множества. Природа элементов в данном случае не имеет значения.
Мы разделяем задачи пересчета, перечисления и оптимизации. Если нас интересует, сколько элементов, принадлежащих конечному множеству, обладает неким свойством (набором свойств),
то это задача пересчета.
Если необходимо выделить все элементы множества, обладающие заданным свойством, то это – задача перечисления.
Если на множестве задана некая целевая функция и нас интересуют элементы множества, на которых функция достигает экстремального значения, то это задача оптимизации.
При решении указанных задач используются следующие поня-
тия [4.1].
Подмножество из m элементов на множестве Х, состоящем из n элементов, называется (n, m) выборкой, где m – объем этой выборки.
Если (n, m) выборка рассматривается с учетом порядка элементов в них, то она называется (n, m)-размещением и обозначается
Anm от слова arrengment. Если m = n, то такое (n, n)-размещение называется собственно Pn перестановкой.
Если порядок элементов в выборке (n, m) не имеет значения, то она называется (n, m)-сочетанием и обозначается Cnm (от слова
combination).
И перестановки, и сочетания могут быть с повторениями и без повторений.
Рассмотрим множество X={a, b, c}.Тогда все упорядоченные и неупорядоченные выборки объемом 2 выглядят следующим образом:
1) размещения с повторениями {aa, ab, ac, ba, bb, bc, ca, cb, cc},
Anm = 9 ;
- Предисловие
- 1.2.Теория множеств
- 1.2.1. Основные понятия теории множеств
- 1.2.4. Свойства операций над множествами
- 1.3.4. Свойства бинарных отношений
- 1.3.7. Отношение толерантности
- 1.3.8. Операции над отношениями
- 2.1. Фундаментальные алгебры
- 2.2. Алгебра высказываний
- 2.6. Булевы функции
- 2.7. Формы представления логических функций
- 2.10. Построение логических схем
- Глава 3. Формальные теории
- 3.1. Основные свойства формальных теорий
- 3.1.1. Выводимость
- 4.1. Прямые доказательства
- 4.2.Косвенные доказательства
- Глава 5. Основы комбинаторики
- 5.4. Разбиения
- 5.7. Производящие функции
- Глава 6. Основы теории графов
- 6.1. Основные понятия
- 6.6. Устойчивость графов
- 6.6.1. Внутренняя устойчивость
- 6.7.3. Двудольное представление графов
- 6.10. Построение графов
- 6.10.1. Преобразование прилагательных в числительные
- 6.10.3. Оценка количества ребер сверху и снизу
- 7.1. Введение в теорию нечетких моделей
- 7.1.1. Принятие решений в условиях неопределенности
- 7.2. Нечеткие множества. Базовые определения
- 7.2.1. Базовые и нечеткие значения переменных
- 7.3.Операции над нечеткими множествами
- 7.3.5. Операции «равенство» и «разность»
- 7.7. Нечеткие числа
- 7.8.Приближенные рассуждения
- 7.8.1. Нечеткая лингвистическая логика
- 7.8.2. Композиционное правило вывода
- Список литературы