Лекция 7. Кривые второго порядка
Основные понятия, включенные в систему тренинг-тестирования:
эллипс; гипербола; парабола; фокусы эллипса; уравнение эллипса; каноническое уравнение эллипса; эксцентриситет эллипса; фокальные радиусы; директрисы эллипса; фокусы гиперболы; каноническое уравнение гиперболы; асимптота гиперболы; оси гиперболы; вершины гиперболы; полуоси гиперболы; эксцентриситет гиперболы; фокальные радиусы гиперболы; директрисы гиперболы; каноническое уравнение параболы; ось параболы.
Уравнение фигуры.
Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру – значит указать из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными и записывается в виде . Если выбрать на плоскости некоторую прямоугольную систему координат, то в ней уравнение называется уравнением фигуры при выполнении следующих двух условий:
Если точка принадлежит фигуре , то координаты являются решениями уравнения , т.е. ;
если пара чисел является решением уравнения , то точка принадлежит фигуре
Это определение в более компактной записи выглядит следующим образом. Уравнение называется уравнением фигуры, если , то есть – решение уравнения .
Из определения уравнения фигуры следует, что фигура состоит только из тех точек плоскости, координаты которых являются решениями уравнения , т.е. уравнение фигуры задает эту фигуру.
Возможны два вида задач:
дано уравнение и надо построить фигуру , уравнением которой является ;
дана фигура и надо найти уравнение этой фигуры.
Первая задача сводится к построению графика уравнения и решается чаще всего методами математического анализа.
Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:
Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
Записать в координатах условие, сформулированное в первом пункте.
Эллипс
Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек и есть величина постоянная (большая, чем расстояние между и ).
Точки и называются фокусами эллипса. Обозначив расстояние между фокусами через , а сумму расстояний от точек эллипса до фокусов через , имеем . Если это условие не выполнено, то рассматриваемое множество точек либо отрезок прямой, заключенной между фокусами, либо не содержит ни одной точки.
Из определения эллипса вытекает следующий метод его построения: если концы нерастяжимой нити длины закрепить в точках и и натянуть нить острием карандаша, то при движении острия будет вычерчиваться эллипс с фокусами и и с суммой расстояний от произвольной точки эллипса до фокусов, равной (Рис. 7.1).
Рис. 7.1
Составим уравнение эллипса. Для этой цели расположим декартову прямоугольную систему координат таким образом, чтобы ось походила через фокусы и , положительное направление оси – от к , начало координат выберем в середине отрезка . Тогда координаты точек и будут соответственно и .
Пусть ‑ произвольная точка эллипса, тогда
,
.
По определению эллипса . Подставляя сюда значения и , имеем
. | (7.1) |
Уравнение (1) и есть уравнение эллипса. Преобразуя, упростим его:
.
Возведя обе части уравнения в квадрат и приведя подобные члены, получим: .
Возведем еще раз обе части в квадрат и приведем подобные члены. Получаем или
| (7.2) |
Положительную величину обозначим через . Тогда уравнение (7.2) примет вид:
| (7.3) |
Оно называется каноническим уравнение эллипса.
Координаты точек эллипса ограничены неравенствами . Значит, эллипс ограниченная фигура, не выходящая за пределы прямоугольника со сторонами и
Заметим, что в уравнение (7.3) входят лишь четные степени и . Поэтому, если точка принадлежит эллипсу, то и точки , , также ему принадлежат. А это означает, что эллипс – линия симметричная относительно координатных осей и .
Поэтому для исследования формы эллипса достаточно рассмотреть его в первой координатной четверти, а в остальных четвертях его строение определяется по симметрии. Для первой четверти, из уравнения (7.3) имеем
| (7.4) |
При возрастании от до , монотонно убывает от до . График функции изображен на Рис. 7.4.
Рис. 7.4
Достроив остальные четверти эллипса по симметрии, получим весь эллипс (Рис. 7.5).
Оси симметрии эллипса (оси и ) называются просто его осями, а центр симметрии – точка ‑ центром эллипса. Точки пересечения эллипса с осями координат называются вершинами эллипса. Отрезки и , а также их длины и называются полуосями эллипса. В случае, когда фокусы эллипса находятся на оси (как в нашем случае), из равенства , следует, что . В этом случае называется большой полуосью, а ‑ малой.
Если , то уравнение (7.3) можно переписать в виде:
| (7.5) |
Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси . Пусть на плоскости выбрана прямоугольная система координат . Тогда преобразование, переводящее произвольную точку в точку , координаты которой задаются формулами , будет окружность (4) переводить в эллипс, заданный соотношением .
Число называется эксцентриситетом эллипса. Эксцентриситет характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении становится более вытянутым (Рис. 7.6).
Фокальными радиусами точки эллипса называются отрезки прямых, соединяющие эту точку с фокусами и . Их длины и задаются формулами и . Прямые называются директрисами эллипса. Директриса называется левой, а ‑ правой. Так как для эллипса , то и, следовательно, левая директриса располагается левее левой вершины эллипса, а правая – правее правой вершины.
Директрисы обладают следующим свойством: отношение расстояния любой точки эллипса от фокуса к ее расстоянию до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е. .
- А кадемия управления при Президенте Республики Беларусь
- Курс лекций
- Введение Лекция 1. Основы математической логики
- Высказывания и логические связки
- Контрольные вопросы к теме:
- Элементарная математика Лекция 2. Элементы теории множеств.
- Основные понятия.
- Основные операции над множествами
- Отображения.
- Отношения эквивалентности и упорядоченности
- Контрольные вопросы к теме
- Лекция 3. Числовые множества.
- Основные понятия
- Соединения. Бином Ньютона.
- Комплексные числа
- Операции над комплексными числами
- Формула Муавра. Извлечение корня из комплексного числа.
- Контрольные вопросы к теме
- Аналитическая геометрия
- Лекция 4. Векторы
- Основные понятия
- Линейные операции над векторами
- Проекция вектора на ось
- Линейная зависимость векторов
- Базис. Координаты вектора в базисе
- Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении
- Направляющие косинусы
- Скалярное произведение
- Векторное произведение
- Смешанное произведение
- Контрольные вопросы к теме
- Лекция 5. Прямая
- Основные понятия
- Взаимное расположение прямых
- Контрольные вопросы к теме
- Лекция 6. Плоскость
- Основные понятия
- Нормальное уравнение плоскости
- Взаимное расположение плоскостей
- Контрольные вопросы к теме
- Лекция 7. Кривые второго порядка
- Гипербола
- Парабола
- Исследование на плоскости уравнения второй степени
- Контрольные вопросы к теме
- Линейная алгебра Лекция 8. Понятие евклидова пространства.
- – Мерные векторы
- Коллинеарные векторы
- Размерность и базис векторного пространства
- Контрольные вопросы к теме
- Лекция 9. Матрицы
- Основные понятия
- Операции над матрицами
- Определитель матрицы
- Ранг матрицы
- Обратная матрица
- Контрольные вопросы к теме
- Лекция 10. *Понятие линейного оператора*
- Переход к новому базису
- Линейное преобразование переменных
- Собственные значения и собственные вектора матриц
- Контрольные вопросы к теме
- Лекция 11. Многочлены
- Основные понятия
- Теорема о делении с остатком.
- Теорема Безу.
- Контрольные вопросы к теме
- Понятие квадратичной формы.
- Канонический базис квадратичной формы
- Канонический базис из собственных векторов матрицы квадратичной формы
- Канонический базис Якоби квадратичной формы .
- Положительно и отрицательно определенные квадратичные формы
- Квадратичная форма положительно определена тогда и только тогда, когда , ,…, .
- Квадратичная форма отрицательно определена тогда и только тогда, когда , ,…, .
- Квадратичная форма положительно определена тогда и только тогда, когда все собственные значения матрицы положительны.
- Квадратичная форма отрицательно определена тогда и только тогда, когда все собственные значения матрицы отрицательны
- Квадратичная форма положительно определена тогда и только тогда, когда главные миноры матрицы положительны.
- Квадратичная форма отрицательно определена тогда и только тогда, когда главные миноры матрицы четного порядка положительны, а главные миноры матрицы нечетного порядка отрицательны.
- Применение квадратичных форм к исследованию кривых второго прядка.
- Контрольные вопросы к теме
- Лекция 13. Системы линейных уравнений
- Основные понятия
- Критерий совместности системы линейных уравнений
- Правило Крамера решения систем линейных уравнений
- Метод Гаусса
- Однородные системы уравнений.
- Разрешенные системы линейных уравнений
- Можно построить решение системы уравнений, у которого значения свободных переменных будут равны соответственно ;
- Если у решений и системы уравнений значения свободных переменных совпадают, то и сами решения совпадают.
- Контрольные вопросы к теме
- Лекция 14. *Основы линейного программирования*
- Линейное программирование
- Задача линейного программирования
- Приведение общей задачи линейного программирования к канонической форме.
- Множества допустимых решений
- Опорное решение задачи линейного программирования, его взаимосвязь с угловыми точками.
- Симплекс-метод с естественным базисом.
- Симплексный метод с искусственным базисом (м-метод).
- Теория двойственности.
- Теоремы двойственности
- Контрольные вопросы к теме
- Экзаменационные вопросы
- Литература