Понятие об оптимальных системах. Примеры постановки задач оптимального управления.
Системы с оптимальным программатором называют оптимальными по режиму управления, а системы с оптимальным регулятором – оптимальными по переходному режиму. Системы управления, оптимальные по режиму управления и/или по переходному режиму, называют оптимальными системами управления.
Задача синтеза оптимальных систем управления относится к классу задач оптимального управления и формулируется как вариационная задача. При этом кроме управления объекта управления должны быть заданы ограничения на управление и фазовый вектор, краевые (граничные) условия и критерий оптимальности
Под оптимальной системой САР понимается система, которая тем или иным способом приданы наилучшие качества, в каком-нибудь определенном смысле.
Примеры постановки задач:
Скорректировать систему так чтобы она имела max точность регулирования заданного объекта.
Создание системы которая позволяла бы максимально быстро перевести систему из одного состаяния в другое необходимое состояние, при задании необходимых параметров.
Обеспечение максимально экономичного режима работы системы на всех режимах работы при заданных внешних условиях.
Получение максимальной надёжности работы системы.
Достижение минимума стоимости системы при заданном качестве и функциональности.
- Понятие управления. Автоматическое и автоматизированное управление. Классификация систем автоматического управления (сау).
- Функциональные схемы сау: разомкнутые и замкнутые сау. Обратная связь и ее типы.
- Структурные схемы систем и их эквивалентные преобразования.
- Формула Мейсена
- Временные характеристики систем. Переходная характеристика.
- Частотные характеристики систем.
- Логарифмические характеристики.
- Передаточная функция: определение и типы
- Типовые звенья и их характеристики
- Основные законы регулирования.
- Необходимое и достаточное условие устойчивости линейных систем
- Алгебраический критерий устойчивости (Рауса-Гурвица)
- Критерий устойчивости Михайлова.
- Критерий Найквиста.
- Точность систем автоматического управления в типовых режимах.
- Понятие переходного процесса. Оценка качества системы по переходной характеристике.
- Методы построения переходного процесса.
- Прямые и косвенные методы исследования качества управления.
- Основные методы повышения точности систем
- Теория инвариантности и комбинированное управление (далее ку)
- Корректирующие средства
- Основные принципы повышения запаса устойчивости систем
- Система с переменными параметрами (далее спр). Нормальная и сопряженная весовые функции
- Параметрическая передаточная функция (далее ппф) нестационарной системы
- Методы анализа нестационарных систем
- Системы с запаздыванием
- Нелинейные системы, общие понятия, особенности динамики, типовые нелинейности.
- Метод малых отклонений. Первый метод Ляпунова. Типы особых точек
- Метод интегрированной аппроксимации (на примере системы с реле)
- Второй метод Ляпунова
- Частотный критерий устойчивости в. М. Попова.
- Методы малого параметра (аналитические методы)
- Метод гармонического баланса.
- Преобразование случайных сигналов линейными системами.
- Преобразование случайных сигналов нелинейными системами.
- Статистически оптимальные параметры линейных систем.
- Статистически оптимальные системы. Уравнение Винера-Хопфа (на примере не реализуемой системы).
- Решение уравнения Винера-Хопфа (для физически реализуемой системы.) Решение уравнения Винера-Хопфа для физически реализуемой системы.
- Преобразование случайных сигналов безынерционными нелинейными системами.
- Метод статистической линеаризации.
- Понятие об оптимальных системах. Примеры постановки задач оптимального управления.
- Синтез управляющего устройства оптимальной по быстродействию системы методом фазовой плоскости.
- Вариационное исчисление и основные задачи вариационного исчисления. Перечислите основные задачи вариационного исчисления?
- Основная задача минимизации. Случай закрепленных конечных точек.
- Случай подвижных конечных точек. Задача перехвата.
- Вариационное исчисление в задачах оптимального управления. Управление по минимуму интегральной оценки.
- Учет физических ограничений и множители Лагранжа (на примере)
- Обобщенная задача оптимального управления.
- Принцип максимума Понтрягина.
- Метод динамического программирования Беллмана.