10.2.1. Эйлеровы графы
Если граф имеет цикл (не обязательно простой), содержащий все ребра графа по одному разу, то такой цикл называется эйлеровым циклом, а граф называется эйлеровым графом. Если граф имеет цепь (не обязательно простую), содержащую все вершины по одному разу, то такая цепь называется эйлеровой цепью, а граф называется полуэйлеровым графом.
Эйлеров цикл содержит не только все ребра (по одному разу), но и все вершины графа (возможно, по несколько раз). Ясно, что эйлеровым может быть только связный граф.
ТЕОРЕМА Если граф G связен и нетривиален, то следующие утверждения эквивалентны:
G — эйлеров граф;
каждая вершина G имеет четную степень;
множество ребер G можно разбить на простые циклы.
доказательство
1 => 2 Пусть Z — эйлеров цикл. Двигаясь по Z, будем подсчитывать степе-
ни вершин, полагая их до начала прохождения нулевыми. Прохождение каждой вершины вносит 2 в степень этой вершины. Поскольку Z содержит все ребра, то когда обход Z будет закончен, будут учтены все ребра, а степени всех вершин — четные.
2 => 3 G — связный и нетривиальный граф, следовательно, Vv d(v) > 0. Степени
вершин четные, следовательно, Vv d(v) ^ 2. Имеем:
2q = d(v) ^ 2р
^ р => q > р - 1.
Следовательно, граф G — не дерево, а значит, граф G содержит (хотя бы один) простой цикл Z\. (Zi — множество ребер.) Тогда G - Z\ -остовный подграф, в котором опять все степени вершин четные. Исключим из рассмотрения изолированные вершины. Таким образом, G - Zi тоже удовлетворяет условию 2, следовательно, существует простой цикл Z2 С (G—Zi). Далее выделяем циклы Zi, пока граф не будет пуст. Имеем: Е = Zi и П Zi = 0.
3 =4> 1 Возьмем какой-либо цикл Z\ из данного разбиения. Если Zi = Е, то теорема доказана. Если нет, то существует цикл Z%, такой что
3ui (vi e Zi&v-i е Z2),
так как G связен. Маршрут Z\ U Z2 является циклом и содержит все свои ребра по одному разу. Если Z\ U Z2 = Я, то теорема доказана. Если нет, то существует цикл Z3, такой что Зи2 (г;2 € Zi U Z2&i;2 G Z3). Далее будем наращивать эйлеров цикл, пока он не исчерпает разбиения. П
- Иркутский государственный технический университет
- 1. Определения графов
- 7.4.5. Массив дуг
- 8.4.2. Трансверсаль
- 8.5.4. Алгоритм нахождения максимального потока
- 8.6.3. Выделение компонент сильной связности
- 8.7.1. Длина дуг
- 8.7.2. Алгоритм Флойда
- 8.7.3. Алгоритм Дейкстры
- Глава 9 Деревья
- 9.1. Свободные деревья
- 9.1.1. Определения
- 9.1 .2. Основные свойства деревьев
- 9.2. Ориентированные, упорядоченные и бинарные деревья
- 9.2.1. Ориентированные деревья
- 9.2.2. Эквивалентное определение ордерева
- 9.2.3. Упорядоченные деревья
- 9.2.4. Бинарные деревья
- 9.3. Представление деревьев в эвм
- 9.3.1. Представление свободных, ориентированных и упорядоченных деревьев
- 9.3.2. Представление бинарных деревьев
- 9.3.3. Обходы бинарных деревьев
- 9.3.4. Алгоритм симметричного обхода бинарного дерева
- 9.4. Деревья сортировки
- 9.4.1. Ассоциативная память
- 9.4.2. Способы реализации ассоциативной памяти
- 9.4.3. Алгоритм бинарного (двоичного) поиска
- 9.4.4. Алгоритм поиска в дереве сортировки
- 9.4.5. Алгоритм вставки в дерево сортировки
- 9.4.6. Алгоритм удаления из дерева сортировки
- 9.4.7. Вспомогательные алгоритмы для дерева сортировки
- 9.4.8. Сравнение представлений ассоциативной памяти
- 9.4.9. Выровненные деревья
- 9.4.10. Сбалансированные деревья
- 9.5. Кратчайший остов
- 9.5.1. Определения
- 9.5.2. Схема алгоритма построения кратчайшего остова
- 9.5.3. Алгоритм Краскала
- Глава 10 Циклы
- 10.1. Фундаментальные циклы и разрезы
- 10.1.1. Циклы и коциклы
- 10.1.2. Независимые множества циклов и коциклов
- 10.1.3. Циклический и коциклический ранг
- 10.2. Эйлеровы циклы
- 10.2.1. Эйлеровы графы
- 10.2.2. Алгоритм построения эйлерова цикла в эйлеровом графе
- 10.2.3. Оценка числа эйлеровых графов
- 10.3. Гамильтоновы циклы
- 10.3.1. Гамильтоновы графы
- 10.3.2. Задача коммивояжера
- Глава 11 Независимость и покрытия
- 11.1. Независимые и покрывающие множества
- 11.1.1. Покрывающие множества вершин и ребер
- 11.1.2. Независимые множества вершин и ребер
- 11.1.3. Связь чисел независимости и покрытий
- 11.2. Построение независимых множеств вершин
- 11.2.1. Постановка задачи отыскания наибольшего независимого множества вершин
- 11.2.2. Поиск с возвратами
- 11.2.3. Улучшенный перебор
- 11.2.4. Алгоритм построения максимальных независимых множеств вершин
- 11.3. Доминирующие множества
- 11.3.1. Определения
- 11.3.2. Доминирование и независимость
- 11.3.3. Задача о наименьшем покрытии
- 11.3.4. Эквивалентные формулировки знп
- 11.3.5. Связь знп с другими задачами
- Глава 12 Раскраска графов
- 12.1. Хроматическое число
- Ух, . . . ,Vn одноцветные классы,доказательство
- 12.2. Планарность
- 12.2.2. Эйлерова характеристика
- 12.2.3. Теорема о пяти красках
- 12.3. Алгоритмы раскрашивания
- 12.3.1. Точный алгоритм раскрашивания
- 12.3.2. Приближенный алгоритм последовательного раскрашивания
- 12.3.3. Улучшенный алгоритм последовательного раскрашивания