logo search
ЛекцииВМ(NEW)

5.4.3 Интерпретация в терминах времени и частоты

В терминах обработки сигналов, преобразование берет представление функции сигнала в виде временных рядов и отображает его в частотный спектр, где ω — угловая частота. То есть оно превращает функцию времени в функцию частоты; это разложение функции на гармонические составляющие на различных частотах.

Когда функция f является функцией времени и представляет физический сигнал, преобразование имеет стандартную интерпретацию как спектр сигнала. Абсолютная величина получающейся в результате комплексной функции F представляет амплитуды соответствующих частот (ω), в то время как фазовые сдвиги получаются как аргумент этой комплексной функции.

Однако важно осознавать, что преобразования Фурье не ограничиваются функциями времени и временными частотами. Они могут в равной степени применяться для анализа пространственных частот, также как для практически любых других функций.