1. Особенности математических вычислений, реализуемых на эвм: теоретические основы численных методов: погрешности вычислений
Современная вычислительная математика ориентирована на использование компьютеров для прикладных расчетов. Любые математические приложения начинаются с построения модели явления (изделия, действия, ситуации или другого объекта), к которому относится изучаемый вопрос. Классическими примерами математических моделей могут служить определенный интеграл, уравнение колебаний маятника, уравнение теплообмена, уравнения упругости, уравнения электромагнитных волн и другие уравнения математической физики. Назовем еще для контраста модель формальных рассуждений – алгебру Буля.
Основополагающими средствами использования математических моделей являются аналитические методы: получение точных решений в частных случаях (например, табличные интегралы), разложения в ряды. Определенную роль издавна играли приближенные вычисления. Например, для вычисления определенного интеграла использовались квадратурные формулы.
Появления в начале XX века электронных вычислительных машин (компьютеров) радикально расширило возможности приложения математических методов в традиционных областях (механике, физике, технике) и вызвало бурное проникновение математических методов в нетрадиционные области (управление, экономику, химию, биологию, психологию, лингвистику, экологию и т.п.).
Компьютер дает возможность запоминать большие (но конечные) массивы чисел и производить над ними арифметические операции и сравнения с большой (но конечной) скоростью по заданной вычислителем программе. Поэтому на компьютере можно изучать только те математические модели, которые описываются конечными наборами чисел, и использовать конечные последовательности арифметических действий, а также сравнений чисел по величине (для автоматического управления дальнейшими вычислениями).
В традиционных областях математическими моделями служат функции, производные, интегралы, дифференциальные уравнения. Для использования компьютеров эти исходные модели надо приближенно заменить такими, которые описываются конечными наборами чисел с указанием конечных последовательностей действий (конечных алгоритмов) для их обработки. Например, функцию следует заменить таблицей; производную
Заменить приближенной формулой
определенный интеграл - суммой; краевую задачу для дифференциального уравнения - задачей об отыскании таблицы значений решения в узлах некоторой сетки, причем так, чтобы выбор шага сетки позволял достигать любой требуемой точности. Оказывается, из двух, на первый взгляд равноценных способов один может оказаться принципиально непригодным из-за того, что доставляемое им приближенное решение не стремится к искомому при измельчении шага сетки, или из-за катастрофически сильной чувствительности к погрешностям округления.
Теория таких моделей и алгоритмов составляет предмет вычислительной математики. Эта теория тесно связана с теориями приближения и интерполяции функций, уравнений с частными производными, интегральных уравнений, информационной сложности функциональных классов, алгоритмов, а также с языками программирования для расчетов на компьютере и т. д. Современные вычислительные методы позволяют, например, рассчитать характеристики обтекания газом тела заданной формы, что недоступно аналитическим методам (подобно нетабличному интегралу).
С использованием компьютера стал возможен вычислительный эксперимент, т. e. расчет в целях проверки гипотез, а также в целях наблюдения за поведением модели, когда заранее не известно, что именно заинтересует исследователя. В процессе численного эксперимента происходит по существу уточнение исходной математической постановки задачи. В процессе расчетов на компьютере происходит накопление информации, что дает возможность в конечном счете произвести отбор наиболее интересных ситуаций. На этом пути сделано много наблюдений и открытий, стимулирующих развитие теории и имеющих важные практические применения.
С помощью компьютера возможно применение математических методов и в нетрадиционных областях, где не удается построить компактные математические модели вроде дифференциальных уравнений, но удается построить модели, доступные запоминанию и изучению на компьютере. Модели для компьютеров в этих случаях представляют собой цифровое кодирование схемы, изучаемого объекта (например, языка) и отношений между его элементами (словами, фразами). Сама возможность изучения таких моделей на компьютере стимулирует появление этих моделей, а для создания обозримой модели необходимо выявление законов, действующих в исходных объектах. С другой стороны, получаемые на компьютере результаты (например, машинный перевод упрощенных текстов с одного языка на другой) вносят критерий практики в оценку теорий (например, лингвистических теорий), положенных в основу математической модели.
Благодаря компьютерам стало возможным рассматривать вероятностные модели, требующие большого числа пробных расчетов, имитационные модели, которые отражают моделируемые свойства объекта без упрощений (например, функциональные свойства телефонной сети).
Разнообразие задач, где могут быть использованы компьютеры, очень велико. Для решения каждой задачи нужно знать многое, связанное именно с этой задачей. Естественно, этому нельзя научиться впрок.
Целью курса является сообщение тех основных понятий, идей и методов, владение которыми позволяет сравнительно быстро научиться работать в конкретных областях. Это реализуется на материале вычислительных задач алгебры, математического анализа, дифференциальных уравнений, поскольку здесь методы хорошо развиты и применяются в далеких друг от друга областях.
Назовем некоторые общие понятия и идеи, которые требуют внимания и наполняются конкретным содержанием в зависимости от задачи, которую предстоит решать с помощью компьютера. Это - дискретизация задачи; обусловленность задачи; погрешность численного метода; вычислительная устойчивость алгоритма; сравнение алгоритмов по полноте используемой ими входной информации, по используемой памяти и числу арифметических действий. Алгоритмы могут отличаться возможностью распараллеливания для одновременного проведения вычислений на многопроцессорном компьютере. Одним из плодотворных и основных методов вычислительной математики является комбинированное использование аналитических и компьютерных средств.
Во введении рассматриваются перечисленные понятия. Это даст некоторое общее представление о предмете вычислительной математики и подготовит к изучению дальнейшего материала.
- Министерство образования и науки Российской Федерации
- Оглавление
- Лекция № 1
- 1. Особенности математических вычислений, реализуемых на эвм: теоретические основы численных методов: погрешности вычислений
- 1.1. Дискретизация
- 1.3. Погрешность
- 1.4. Устойчивость и сложность алгоритма (по памяти, по времени)
- 2.1. Основные понятия линейной алгебры. Классификация методов решения
- 2.2. Метод исключения Гаусса. Вычисление определителя и обратной матрицы методом исключения
- 2.3. Численные методы решения линейных уравнений
- 2.3.1. Метод прогонки
- 2.3.2. Итерационные методы
- 3.1. Решение нелинейных уравнений
- 3.1.1. Метод половинного деления
- 3.1.2. Метод простой итерации
- 3.1.3. Метод Ньютона
- 3.1.4. Метод секущих
- 3.1.5. Метод парабол
- 3.2. Методы решения нелинейных систем уравнений
- 4.1.Функция и способы ее задания
- 4.2 Основные понятия теории приближения функций
- 4.3 Интерполяция функций
- 4.3.1 Интерполирование с помощью многочленов
- 4.3.2 Погрешность интерполяционных методов
- 4.3.3 Интерполяционный многочлен Лагранжа
- 4.3.4 Конечные разности
- 4.3.5 Интерполяционные многочлены Стирлинга и Бесселя
- 4.3.6 Интерполяционные многочлены Ньютона
- 4.3.7 Разделенные разности
- 4.3.8 Интерполяционный многочлен Ньютона для произвольной сетки узлов
- 4.3.9 Итерационно-интерполяционный метод Эйткина
- 4.3.10 Интерполирование с кратными узлами
- 4.4 Равномерное приближение функций. Приближение методом наименьших квадратов
- 5.1. Численное дифференцирование
- 5.2. Формулы численного интегрирования
- 5.3. Решение обыкновенных дифференциальных уравнений. Метод конечных разностей для численного решения дифференциальных уравнений
- Интегрирование дифференциальных уравнений с помощью степенных рядов
- 5.4. Преобразование Фурье
- 5.4.1 Применения преобразования Фурье
- 5.4.2 Разновидности преобразования Фурье Непрерывное преобразование Фурье
- Ряды Фурье
- Дискретное преобразование Фурье
- Оконное преобразование Фурье
- Другие варианты
- 5.4.3 Интерпретация в терминах времени и частоты
- 5.4.4 Таблица важных преобразований Фурье
- Библиографический список