[Править]Необходимый признак сходимости ряда
Ряд может сходиться лишь в том случае, когда член (общий член ряда) стремится к нулю:
Это необходимый признак сходимости ряда (но не достаточный!). Если же общий член ряда не стремится к нулю — это достаточный признак расходимости.
3 Необходимый признак сходимости. Признак сходимости Даламбера
Определение: Пусть задана бесконечная последовательность чисел (действительных или комплексных)
Числовым рядом называется выражение вида: . Сокращенно ряд обозначают следующим образом: . При этом числа называются членами ряда, - общим членом ряда.
Необходимый признак сходимости ряда: Если ряд сходиться, то общий член ряда стремиться к нулю при , т.е. . Т.о. если , то ряд расходится. Признак Д’Аламбера [править] Материал из Википедии — свободной энциклопедии При́знак д’Аламбе́ра (или Признак Даламбера) — признак сходимости числовых рядов, установлен Жаном д’Аламбером в 1768 г. Если для числового ряда
существует такое число , , что начиная с некоторого номера выполняется неравенство
то данный ряд абсолютно сходится; если же, начиная с некоторого номера
то ряд расходится. [править]Признак сходимости д’Аламбера в предельной форме Если существует предел
то рассматриваемый ряд абсолютно сходится если , а если — расходится . Замечание. Если , то признак д′Аламбера не даёт ответа на вопрос о сходимости ряда. 4 Признак сравнения. Радикальный признак Коши Признак сравнения [править] Материал из Википедии — свободной энциклопедии Признак сравнения — утверждение об одновременности расходимости или сходимости двух рядов, основанный на сравнении членов этих рядов.
[править]Формулировка
п·о·р Доказательство [показать] [править]Признак сравнения отношений Также признак сравнения можно сформулировать в более удобной форме — в виде отношений. [править]Формулировка
п·о·р Доказательство [показать] [править]Предельный признак сравнения Поскольку достоверно установить справедливость этого неравенства при любых n — довольно сложная задача, то на практике признак сравнения обычно используется в предельной форме. [править]Формулировка
Радикальный признак Коши [править] Материал из Википедии — свободной энциклопедии У этого термина существуют и другие значения, см. Признак Коши. Радикальный признак Коши — признак сходимости числового ряда:
[править]Предельная форма Условие радикального признака равносильно следующему:
То есть можно сформулировать радикальный признак сходимости знакоположительного ряда в предельной форме:
[править]Доказательство 1. Пусть . Очевидно, что существует такое , что . Поскольку существует предел , то подставив в определение предела выбранное получим:
Раскрыв модуль, получаем:
Поскольку , то ряд сходится. Следовательно, по признаку сравнения ряд тоже сходится. 2. Пусть . Очевидно, что существует такое , что . Поскольку существует предел , то подставив в определение предела выбранное получим:
Раскрыв модуль, получаем:
Поскольку , то ряд расходится. Следовательно, по признаку сравнения ряд тоже расходится. 5 Знакочередующиеся ряды |
- Гиперболи́ческие фу́нкции — семейство элементарных функций, выражающихся через экспоненту и тесно связанных с тригонометрическими функциями. Определение
- Определение
- [Править]Сходимость числовых рядов
- [Править]Необходимый признак сходимости ряда
- Знакочередующийся ряд
- [Править]Признак Лейбница
- [Править]Оценка остатка ряда Лейбница
- Степенной ряд
- [Править]Пространство степенных рядов
- [Править]Сходимость степенных рядов
- [Править]Признаки сходимости
- Ряд Тейлора
- [Править]Определение
- [Править]Связанные определения
- [Править]Свойства
- [Править]Формула Тейлора
- [Править]Различные формы остаточного члена
- Ряды Маклорена некоторых функций
- 8 Ряды фурье Ряд Фурье
- 10 Двойной Интегралл Двойной интеграл
- 11 Понятие о дифференциальном уравнении. Задача Коши
- Задача Коши
- [Править]Различные постановки задачи Коши
- 12 Дифференциальные уравнения с разделяющимися переменными
- 13 Однородное дифференциальное уравнение
- 15 Линейное дифференциальное уравнение с постоянными коэффициентами
- [Править]Однородное уравнение [править]Уравнение порядка n
- [Править]Уравнение второго порядка
- Тандартная модель
- Действия над комплексными числами