Непрерывные отображения
ОПРЕДЕЛЕНИЕ 7. Пусть Х, Y – метрическое пространство. Отображение f: ХY называется непрерывным в точке aХ, если из того, что хna следует, что f(хn) f(a). Отображение называется непрерывным на Х, если оно непрерывно во всех точках Х.
ПРЕДЛОЖЕНИЕ 5. Для того чтобы отображение было непрерывным на Х, необходимо и достаточно, чтобы прообраз каждого открытого подмножества Y было открытым подмножеством Х.
Аналогично, отображение является непрерывным тогда и только тогда, когда прообраз всякого замкнутого множества является замкнутым. При этом образ открытого множества при непрерывном отображении может не быть открытым, а образ замкнутого множества замкнутым. Например, образом открытого множества (1,1) при отображении y = x2 является множество [0,1), которое открытым не является.
Из того, что образ всякого открытого множества открыт, не следует непрерывность отображения. Например, рассмотрим отображение f отрезка [1,1] в двухточечное дискретное пространство {a,b} (п. Error: Reference source not found), действующее по правилу f[1,0] = {a}, f(0,1] = {b}. Поскольку в дискретном пространстве любое множество является открытым, то образ любого открытого множества открытый. Непрерывным отображение не является, поскольку 1/n0, но неверно, что f(1/n) = bf(0) = a.
Cуперпозиция непрерывных отображений является непрерывным отображением. При этом если у непрерывного отображения существует обратное, то оно не обязано быть непрерывным.
ОПРЕДЕЛЕНИЕ 8. Отображение f: ХY называется топологическим или гомеоморфизмом, если оно непрерывное, биективное и обратное отображение также непрерывное.
-
Содержание
- 1. Метрические пространства.
- Некоторые важные неравенства
- Замыкания множеств. Замкнутые и открытые множества.
- Непрерывные отображения
- Полные метрические пространства
- Компактные метрические пространства
- Линейные нормированные пространства
- Изоморфные и изометричные линейные нормированные пространства
- Гильбертовы пространства
- Линейные операторы
- Сопряженные пространства и слабая сходимость
- Три фундаментальные теоремы функционального анализа