Размерность и базис векторного пространства
Определение. Вектор называется линейной комбинацией векторов векторного пространства R, если он равен сумме произведений этих векторов на произвольные действительные числа:
| (8.1) |
где – какие угодно действительные числа.
Определение. Векторы векторного пространства называются линейно зависимыми, если существуют, такие числа , не равные одновременно нулю, что
| (8.2) |
В противном случае векторы называются линейно независимыми.
Из приведенных выше определений следует, что векторы линейно независимы, если равенство справедливо лишь при , и линейно зависимы, если это равенство выполняется, когда хотя бы одно из чисел отлично от нуля.
Можно показать, что если векторы линейно зависимы, то по крайней мере один из них линейно выражается через остальные. Верно и обратное утверждение о том, что если один из векторов выражается линейно через остальные, то все эти векторы в совокупности линейно зависимы. В противном случае векторы называются линейно независимыми.
Из приведенных выше определений следует, что векторы линейно независимы, если равенство (8.2) справедливо лишь при , и линейно зависимы, если это равенство выполняется, когда хотя бы одно из чисел отлично от нуля.
Примером линейно независимых векторов являются два неколлинеарных, т.е. не параллельных одной прямой, вектора и на плоскости. Действительно, условие (8.2) будет выполняться лишь в случае, когда , ибо если,
например, , то и векторы и коллинеарны. Однако любые три вектора плоскости линейно зависимы.
Отметим некоторые свойства векторов линейного пространства.
Если среди векторов имеется нулевой вектор, то эти векторы линейно зависимы.
Если часть векторов являются линейно зависи мыми, то и все эти векторы — линейно зависимые.
Определение. Линейное пространство называется -мерным, если в нем существует линейно независимых векторов, а любые из векторов уже являются зависимыми. Другими словами, размерность пространства — это максимальное число содержащихся в нем линейно независимых векторов. Число называется размерностью пространства и обозначается .
Определение. Совокупность линейно независимых векторов -мерного пространства называется базисом.
Справедлива следующая теорема.
Теорема. Каждый вектор линейного пространства можно представить и притом единственным способом в виде линейной комбинации векторов базиса :
Это равенство называется разложением вектора по базису , а числа — координатами вектора относительно этого базиса. В силу единственности разложения каждый вектор однозначно может быть определен координатами в некотором базисе.
Очевидно, что нулевой вектор имеет все нулевые координаты, а вектор, противоположный данному, – противоположные по знаку координаты.
Теорема. Если – система линейно независимых векторов пространства и любой вектор линейно выражается через , то пространство является -мерным пространством , а векторы – его базисом.
Базисом векторного пространства называется любая независимая система линейно независимых –векторов этого пространства, количество которых равно , т.е. выбор системы базисных векторов векторного пространства неоднозначен, и может быть осуществлен большим числом способов.
Нередко приходится встречаться с заменой переменных, при которой старые переменные линейно выражаются через новые, например, при переходе от одного базиса пространства к другому. Такую замену переменных называют обычно их линейным преобразованием.
Линейным преобразованием переменных называется выражение системы переменных через новую систему переменных с помощью линейных однородных функций
Линейное преобразование вполне определяется таблицей размером , составленной из коэффициентов при . Такая таблица, составленная из элементов называется матрицей , а само преобразование представляет собой пример матричной операции. Понятие матрицы требует более детального рассмотрения, что и будет сделано в следующем разделе.
- А кадемия управления при Президенте Республики Беларусь
- Курс лекций
- Введение Лекция 1. Основы математической логики
- Высказывания и логические связки
- Контрольные вопросы к теме:
- Элементарная математика Лекция 2. Элементы теории множеств.
- Основные понятия.
- Основные операции над множествами
- Отображения.
- Отношения эквивалентности и упорядоченности
- Контрольные вопросы к теме
- Лекция 3. Числовые множества.
- Основные понятия
- Соединения. Бином Ньютона.
- Комплексные числа
- Операции над комплексными числами
- Формула Муавра. Извлечение корня из комплексного числа.
- Контрольные вопросы к теме
- Аналитическая геометрия
- Лекция 4. Векторы
- Основные понятия
- Линейные операции над векторами
- Проекция вектора на ось
- Линейная зависимость векторов
- Базис. Координаты вектора в базисе
- Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении
- Направляющие косинусы
- Скалярное произведение
- Векторное произведение
- Смешанное произведение
- Контрольные вопросы к теме
- Лекция 5. Прямая
- Основные понятия
- Взаимное расположение прямых
- Контрольные вопросы к теме
- Лекция 6. Плоскость
- Основные понятия
- Нормальное уравнение плоскости
- Взаимное расположение плоскостей
- Контрольные вопросы к теме
- Лекция 7. Кривые второго порядка
- Гипербола
- Парабола
- Исследование на плоскости уравнения второй степени
- Контрольные вопросы к теме
- Линейная алгебра Лекция 8. Понятие евклидова пространства.
- – Мерные векторы
- Коллинеарные векторы
- Размерность и базис векторного пространства
- Контрольные вопросы к теме
- Лекция 9. Матрицы
- Основные понятия
- Операции над матрицами
- Определитель матрицы
- Ранг матрицы
- Обратная матрица
- Контрольные вопросы к теме
- Лекция 10. *Понятие линейного оператора*
- Переход к новому базису
- Линейное преобразование переменных
- Собственные значения и собственные вектора матриц
- Контрольные вопросы к теме
- Лекция 11. Многочлены
- Основные понятия
- Теорема о делении с остатком.
- Теорема Безу.
- Контрольные вопросы к теме
- Понятие квадратичной формы.
- Канонический базис квадратичной формы
- Канонический базис из собственных векторов матрицы квадратичной формы
- Канонический базис Якоби квадратичной формы .
- Положительно и отрицательно определенные квадратичные формы
- Квадратичная форма положительно определена тогда и только тогда, когда , ,…, .
- Квадратичная форма отрицательно определена тогда и только тогда, когда , ,…, .
- Квадратичная форма положительно определена тогда и только тогда, когда все собственные значения матрицы положительны.
- Квадратичная форма отрицательно определена тогда и только тогда, когда все собственные значения матрицы отрицательны
- Квадратичная форма положительно определена тогда и только тогда, когда главные миноры матрицы положительны.
- Квадратичная форма отрицательно определена тогда и только тогда, когда главные миноры матрицы четного порядка положительны, а главные миноры матрицы нечетного порядка отрицательны.
- Применение квадратичных форм к исследованию кривых второго прядка.
- Контрольные вопросы к теме
- Лекция 13. Системы линейных уравнений
- Основные понятия
- Критерий совместности системы линейных уравнений
- Правило Крамера решения систем линейных уравнений
- Метод Гаусса
- Однородные системы уравнений.
- Разрешенные системы линейных уравнений
- Можно построить решение системы уравнений, у которого значения свободных переменных будут равны соответственно ;
- Если у решений и системы уравнений значения свободных переменных совпадают, то и сами решения совпадают.
- Контрольные вопросы к теме
- Лекция 14. *Основы линейного программирования*
- Линейное программирование
- Задача линейного программирования
- Приведение общей задачи линейного программирования к канонической форме.
- Множества допустимых решений
- Опорное решение задачи линейного программирования, его взаимосвязь с угловыми точками.
- Симплекс-метод с естественным базисом.
- Симплексный метод с искусственным базисом (м-метод).
- Теория двойственности.
- Теоремы двойственности
- Контрольные вопросы к теме
- Экзаменационные вопросы
- Литература