2.5. Критерій 2 (Пірсона)
Критерій Пірсона використовують при кількості спостере-жень n > 200 і лише у виняткових випадках при n > 100 [5]. Ре-зультати вимірювання деякої величини X розміщують в порядку зростання . Вимірювання повинні проводитись з однаковою ретельністю, в одних і тих самих умовах, одним оператором.
За даними вимірювання обчислюють розмах і утворюють r рівних інтервалів шириною
. (2.34)
Число інтервалів r вибирають у залежності від об’єму вибірки n:
При n = 200; r = 18-20;
n = 400; r = 25-30;
n = 1000; r = 35-40.
При 100 < n < 200 критерій 2 використовують у виняткових випадках з числом інтервалів r = 15-18. Наприклад, якщо при перевірці по якомусь іншому критерію гіпотеза прийнята при рівні значимості 0,1 і відкинута при рівні 0,05, то в цьому ви-падку можна додатково використати критерій 2.
Для зручності дані для перевірки відповідності дослідного і теоретичного розподілів за критерієм 2 записують у табли- цю 2.3.
Результати вимірювань xi групують по інтервалах і підрахо-вують частоти попадання xi в j-ий інтервал. Порядковий номер інтервалу j записуємо в перший стовпчик таблиці, а частоти – в другий.
Визначають значення xj ( j = 1, 2, …, r), які дорівнюють серединам інтервалів групування, і заносять їх в 3-ій стовпчик.
Далі підраховують теоретичні частоти , тобто знаходять число даних, яке повинно було б бути вj-у інтервалі, якщо б їх розподіл відповідав вибраному за гіпотезою:
. (2.35)
Отримані значення заносять у 4-й стовпчик. У 5-му стовпчику для кожного інтервалу обчислюють
. (2.36)
- 2. Попередня обробка результатів вимірювань
- 2.1. Виключення грубих похибок
- 2.2. Способи виключення систематичних похибок
- 2.2.1. Аналітичне виключення систематичних похибок
- 2.2.2. Експериментальне виключення систематичних похибок
- Звідки отримуємо
- 2.2.3. Рандомізація
- 2.3. Групування експериментальних даних
- Таблиця 2.1
- Причому
- 2.4. Експериментальне встановлення
- 2.4.1. Визначення центра розподілу похибок (дійсного значення вимірюваної величини)
- 2.4.2. Визначення експериментальних моментів розподі-лу похибок
- 2.4.9. Визначення інформаційних характеристик розподілу похибок
- 2.5. Критерій 2 (Пірсона)
- Таблиця 2.3
- 2.6. Критерій 2 (Мізеса – Смірнова)
- 2.7. Складовий критерій
- 2.8. Критерій w
- 2.9. Графоаналітичний спосіб перевірки
- Нормованої функції Лапласа
- Додаток 14. Залежність y від значення інтеграла Лапласа ф(y)