1. Основные понятия о ду.
ДУ– уравнения, в которые входят не только неизвестные функции, но и их производные. Если искомая функция зависит от одной независимой переменной, то такое ДУ – обыкновенное. Если же она зависит от нескольких переменных, то это уравнение в частных производных.
Может рассматриваться как одно ДУ, так и их система.
Обыкновенное ДУ– соотношение, связывающее независимую переменную, искомую функциюи ее производную.
ПорядокДУ – порядок старшей производной.
Решение- функция, непрерывная,раз дифференцируемая и обращающая уравнение в тождество.
ДУ используются при построении математических моделей динамических систем.
Динамическая система– система, эволюционирующая с течением времени и допускающая описание в виде состояния.
Состояние– описание, по значению которого в данный момент времени можно однозначно указать, значение в любой момент времени., где- однозначный оператор. Переменные, описывающие состояние –фазовые. Пространство фазовых переменных –фазовое.
Предполагается, что между состояниями динамической системы и точками фазового пространства установлено взаимнооднозначное и взаимнонепрерывное соответствие.
Математическая модельдинамического процесса – совокупность фазового пространства, интервала изменения времении оператора.
Этапы построения матмодели:
Выбор и идеализация
Выбор переменных, характеризующих состояние и введение систем их отсчета.
Выбор физического закона и построение оператора .
Построение приведенной модели.
- 1. Основные понятия о ду.
- 2. Ду-1-проп. Решение. Общее решение, частное решение. Общий интеграл. Задача Коши. Существование и единственность решения задачи Коши.
- 3. Геометрическая интерпретация ду-1-проп. Поле направлений. Интегральная кривая. Геометрический смысл задачи Коши. Обыкновенная и особые точки.
- 4. Качественное исследование ду-1-проп. Изоклины. Линия экстремумов и линия перегибов интегральных кривых.
- 5. Особые решения ду-1-проп. Способы их отыскания.
- 6. Ду 1 порядка с разделяющимися переменными и приводимые к ним.
- 8. Ду 1 порядка, приводимые к однородным.
- 9. Линейные ду 1 порядка. Структура общего решения. Метод вариации произвольной постоянной.
- 10. Ду 1 порядка, приводимые к линейным. Ду Бернулли и Риккати
- 11. Ду 1 порядка в полных дифференциалах.
- 12. Интегрирующий множитель ду 1 порядка. Способы его нахождения. Связь с особыми решениями. Число интегрирующих множителей данного уравнения
- 13. Интегрирующий множитель для ду с разделяющимися переменными, однородного и линейного.
- 14. Теорема Коши-Пикара для ду-1-проп. Метод последовательных приближений Пикара построения решения.
- 15. Теорема Коши-Пикара для ду-1-проп. Доказательство сходимости пикаровских приближений к непрерывной функции.
- 16. Теорема Коши-Пикара для ду-1-проп. Доказательство сходимости пикаровских приближений к решению задачи Коши.
- 17. Теорема Коши-Пикара для ду-1-проп. Доказательство единственности решения. Метод Пикара как приближенный метод решения задачи Коши.
- 18. Теорема о продолжении решения задачи Коши. Продолжаемые и непродолжаемые решения.
- 19. Теорема о непрерывной зависимости решения задачи Коши от параметров.
- 20. Теорема о непрерывной зависимости решения задачи Коши от начальных условий.
- 21. Степень гладкости решения задачи Коши. Дифференцируемость решения по начальным данным и параметрам.
- 22. Численные методы интегрирования ду 1 порядка. Методы I и II порядка. Одношаговые и многошаговые методы. Особенности численного моделирования решения ду.
- 23. Ду-1-пнроп. Решение. Общее решение, частное решение. Общий интеграл. Поле направлений. Постановка задачи Коши.
- 24. Теорема Коши-Пикара для ду 1 порядка, не разрешенного относительно производной.
- 25. Особые решения ду-1-нпроп. Способы отыскания. Дискриминантная кривая. Огибающая семейства интегральных кривых.
- 26. Методы интегрирования ду-1-пнроп. Уравнения, не содержащие искомой функции.
- 27. Методы интегрирования ду-1-пнроп. Уравнения, не содержащие независимой переменной.
- 28. Методы интегрирования ду-1-пнроп. Общий случай.
- 29. Ду Лагранжа
- 30. Ду Клеро