3. Геометрическая интерпретация ду-1-проп. Поле направлений. Интегральная кривая. Геометрический смысл задачи Коши. Обыкновенная и особые точки.
Точка , в которой задача Коши имеет единственное решение называетсяобыкновенной, - где имеет неединственное решение или не имеет решения –особая.
В каждой точке единственным образом определено направление касательной к ИК. Уравнениезадаетполе направлений. В особой точке поле не определено. ИКне пересекаются. Если через точку проходит несколько решений, то они в этой точке касаются.
Геометрическая постановка задачи Коши: провести ИК через точку.
Геометрический смысл задачи Коши. Через точкупровести кривую, касательная к которой в каждой точке совпадает с направлением поля в этой точке.
Во многих задачах переменные иравноправны, т.е. можно рассматривать не только, но и, и перейти к уравнению. Если, то уравненияиэквивалентны. Если,, то в точкеопределен вертикальный наклон.
Решение перевернутого уравнения учитывается при геометрическом построении ИК. При аналитическом решении перевернутое уравнение не рассматривается.
- 1. Основные понятия о ду.
- 2. Ду-1-проп. Решение. Общее решение, частное решение. Общий интеграл. Задача Коши. Существование и единственность решения задачи Коши.
- 3. Геометрическая интерпретация ду-1-проп. Поле направлений. Интегральная кривая. Геометрический смысл задачи Коши. Обыкновенная и особые точки.
- 4. Качественное исследование ду-1-проп. Изоклины. Линия экстремумов и линия перегибов интегральных кривых.
- 5. Особые решения ду-1-проп. Способы их отыскания.
- 6. Ду 1 порядка с разделяющимися переменными и приводимые к ним.
- 8. Ду 1 порядка, приводимые к однородным.
- 9. Линейные ду 1 порядка. Структура общего решения. Метод вариации произвольной постоянной.
- 10. Ду 1 порядка, приводимые к линейным. Ду Бернулли и Риккати
- 11. Ду 1 порядка в полных дифференциалах.
- 12. Интегрирующий множитель ду 1 порядка. Способы его нахождения. Связь с особыми решениями. Число интегрирующих множителей данного уравнения
- 13. Интегрирующий множитель для ду с разделяющимися переменными, однородного и линейного.
- 14. Теорема Коши-Пикара для ду-1-проп. Метод последовательных приближений Пикара построения решения.
- 15. Теорема Коши-Пикара для ду-1-проп. Доказательство сходимости пикаровских приближений к непрерывной функции.
- 16. Теорема Коши-Пикара для ду-1-проп. Доказательство сходимости пикаровских приближений к решению задачи Коши.
- 17. Теорема Коши-Пикара для ду-1-проп. Доказательство единственности решения. Метод Пикара как приближенный метод решения задачи Коши.
- 18. Теорема о продолжении решения задачи Коши. Продолжаемые и непродолжаемые решения.
- 19. Теорема о непрерывной зависимости решения задачи Коши от параметров.
- 20. Теорема о непрерывной зависимости решения задачи Коши от начальных условий.
- 21. Степень гладкости решения задачи Коши. Дифференцируемость решения по начальным данным и параметрам.
- 22. Численные методы интегрирования ду 1 порядка. Методы I и II порядка. Одношаговые и многошаговые методы. Особенности численного моделирования решения ду.
- 23. Ду-1-пнроп. Решение. Общее решение, частное решение. Общий интеграл. Поле направлений. Постановка задачи Коши.
- 24. Теорема Коши-Пикара для ду 1 порядка, не разрешенного относительно производной.
- 25. Особые решения ду-1-нпроп. Способы отыскания. Дискриминантная кривая. Огибающая семейства интегральных кривых.
- 26. Методы интегрирования ду-1-пнроп. Уравнения, не содержащие искомой функции.
- 27. Методы интегрирования ду-1-пнроп. Уравнения, не содержащие независимой переменной.
- 28. Методы интегрирования ду-1-пнроп. Общий случай.
- 29. Ду Лагранжа
- 30. Ду Клеро