45u
Глава II. Алгебра предикатов
Алгебра высказываний позволяет описывать лишь такие предложения, в которых выражаются свойства предметов. Но если в предложении кроме свойств предметов имеются и отношения между ними, то такие предложения изучаются в так называемой алгебре предикатов, которая является расширением алгебры высказываний.
Yandex.RTB R-A-252273-3Содержание
- Пособие по дисциплине
- Пособие по дисциплине
- Оглавление
- Глава I. Алгебра высказываний.
- Предисловие
- Введение
- Глава I. Алгебра высказываний.
- § 1. Высказывания и логические операции над ними.
- § 2. Формулы алгебры высказываний и их истинностное значение.
- § 3. Основные виды формул алгебры высказываний. Законы формул алгебры высказываний.
- § 4. Равносильность формул алгебры высказываний и ее свойства.
- § 5. Основные равносильности формул алгебры высказываний.
- § 6. Конъюнктивные и дизъюнктивные нормальные формы формул алгебры высказываний.
- § 7. Проблема установления вида формул алгебры высказываний.
- § 8. Совершенные конъюнктивные и дизъюнктивные нормальные формы формул алгебры высказываний.
- § 9. Применение алгебры высказываний к анализу и синтезу электрических схем.
- Алгоритм упрощения электрических схем
- § 10. Приложение алгебры высказываний к вопросам школьной математики.
- Глава II. Алгебра предикатов
- § 1. Определение n-местного предиката и его основных видов.
- § 2. Логические операции над предикатами и их свойства.
- § 3. Связанные и свободные переменные. Свойства операций навешивания кванторов.
- § 4. Формулы алгебры предикатов и их основные виды.
- § 5. Равносильность формул алгебры предикатов. Основные равносильности алгебры предикатов.
- § 6. Приведенные и предваренные формы предикатных формул.
- Рекомендуемая литература