Глава 3. Оптимальный раскрой Цели
В данном разделе показаны возможности использования модели линейного программирования для решения задач раскроя. Эта область приложения модели линейного программирования хорошо изучена. Благодаря работам в области оптимального раскроя основоположника теории линейного программирования лауреата Нобелевской премии академика Л.В. Канторовича задачу оптимального раскроя можно назвать классической прикладной оптимизационной задачей.
Студент должен уметь формулировать и использовать для экономического анализа следующие понятия:
-
материал;
-
заготовка;
-
отходы;
-
способ раскроя (рациональный и оптимальный);
• интенсивность использования рациональных способов раскроя.
Модели
Большинство материалов, используемых в промышленности, поступает на производство в виде стандартных форм. Непосредственное использование таких материалов, как правило, невозможно. Предварительно их разделяют на заготовки необходимых размеров. Это можно сделать, используя различные способы раскроя материала.
Задача оптимального раскроя состоит в том, чтобы выбрать один или несколько способов раскроя материала и определить, какое количество материала следует раскраивать, применяя каждый из выбранных способов.
Задачи такого типа возникают в металлургии и машиностроении, лесной, лесообрабатывающей, легкой промышленности.
Выделяют два этапа решения задачи оптимального раскроя.
На первом этапе определяются рациональные способы раскроя материала.
На втором этапе решается задача линейного программирования для определения интенсивности использования рациональных способов раскроя.
Yandex.RTB R-A-252273-3
- Содержание
- Введение
- Глава 1. Оптимизация плана производства Цели
- Пример №1 решения задачи оптимизации плана производства Исходная постановка задачи
- Формальная математическая постановка задачи
- Методика выполнения в Microsoft Excel
- Пример №2 решения задачи оптимизации плана производства Исходная постановка задачи
- Формальная математическая постановки задачи
- Методика выполнения в Microsoft Excel
- Глава 2. Транспортная задача
- Пример решения транспортной задачи Исходная постановка задачи
- Формальная математическая постановка задачи
- Методика выполнения в Microsoft Excel
- Глава 3. Оптимальный раскрой Цели
- 1. Определение рациональных способов раскроя материала.
- 2. Определение интенсивности использования рациональных способов раскроя.
- Пример решения задачи оптимального раскроя Исходная постановка задачи
- Формальная математическая постановки задачи
- Методика выполнения в Microsoft Excel
- Требования к выполнению лабораторной работы
- "Решение задач оптимизации средствами Microsoft Excel"