matan_0494
Тройной интеграл и его свойства
Пусть на некоторой ограниченной замкнутой области V трехмерного пространства задана ограниченная ф-ция f (x,y,z). Разобьем область V на n произвольных частичных областей, не имеющих общих внутренних точек, с объемами V1… Vn В каждой частичной области возбмем произв. точку М с кооорд Mi(i,i,i) составим сумму: f(i,i,i)Vi, кот наз интегральной суммой для ф-ции f(x,y,z). Обозначим за максимальный диаметр частичной области. Если интегральная сумма при 0 имеет конечный предел, то сей предел и называется тройным интегралом от ф-ции f(x,y,z) по области V И обозначается:
Св-ва такие же как у двойного интеграла.
-
Содержание
- Определение двойного интеграла
- Свойства двойного интеграла
- Приведение двойного интеграла к повторным в случае прямоугольной области
- Приведение двойного интеграла к повторным в случае криволинейной области
- Замена переменных в двойном интеграле
- Вычисление двойного интеграла в полярной системе координат
- Двойной интеграл в полярных координатах
- Вычисление объема с помощью двойного интеграла
- Вычисление площади поверхности с помощью двойного интеграла
- Тройной интеграл и его свойства
- Вычисление тройного интеграла в декартовой системе координат
- Замена переменных в тройном интеграле
- Вычисление тройного интеграла в цилиндрической и сферической системах координат
- Криволинейные интегралы первого рода. Свойства
- Вычисление криволинейных интегралов первого рода
- Криволинейные интегралы второго рода. Свойства. Вычисление
- Теорема Грина-Римана
- Условие независимости криволинейного интеграла второго рода от пути интегрирования (случай плоской кривой)
- Поверхностный интеграл первого рода. Свойства. Вычисление
- Поверхностный интеграл второго рода. Свойства. Вычисление
- Теорема Остроградского –Гаусса
- Теорема Стокса (без доказательства). Условия независимости криволинейного интеграла от пути интегрирования (случай пространственной кривой)
- Элементы теории поля
- Множество комплексных чисел. Стереографическая проекция
- Дифференцируемость функции комплексного переменного
- Условия Коши-Римана
- Интеграл от функции комплексного переменного. Свойства. Вычисление
- Теоремы Коши для аналитической функции в односвязной области
- Теоремы Коши для аналитической функции в многосвязной области
- Интегральная формула Коши для аналитической функции
- Ряд Тейлора аналитической функции
- Изолированные особые точки аналитической функции
- Вычет в изолированной особой точке
- Вычисление вычетов в изолированной особой точке
- Основная теорема о вычетах
- Ортогональность тригонометрической системы функций
- Ряд Фурье по тригонометрической системе функций . Теорема Дирихле
- Тригонометрический ряд Фурье для четных и нечетных функций
- Тригонометрический ряд Фурье в комплексной форме
- Прямое и обратное преобразование Фурье