Вычет в изолированной особой точке
Если точка а о.и. точка f(z),коэфициент
Вывод: Вычет это есть C-1 коэффициент.
Выч[f(z),a]= C-1.
Если точка а правльеная точка, то главной части в р.Л. нет, следует Выч[f(z),a]=0 для точки а (устранимой или правельной).
Если точка а- из.о. точка другого типа то вычит может быть любым полюсом.
Если а= то Выч[f(z),a]= -C-1. Минус из-за обхода по часовой стрелке.
Теорема.
П усть f(z) аналитич-на во всех точка плоскости за исключением aN=, тогда
Доказательство.
Из сопоставления определения вычита в бесконечности и вычетов в конечной точке.
Утверждение.
Если функция f(z) имеет в точке z=a простой полюс, то вычет в этой точке равен
док-во
Т.к. а – простой полюс, то ряд Лорана имеет вид
-аналитическая функция в окрестности точки а.
Утверждение2.
Если функция f(z) имеет в точке z=а полюс порядка m, то вычет в этой точке равен
Доказательство:
Разложим в ряд Лорана
умножим на (z-a)m
-
Содержание
- Определение двойного интеграла
- Свойства двойного интеграла
- Приведение двойного интеграла к повторным в случае прямоугольной области
- Приведение двойного интеграла к повторным в случае криволинейной области
- Замена переменных в двойном интеграле
- Вычисление двойного интеграла в полярной системе координат
- Двойной интеграл в полярных координатах
- Вычисление объема с помощью двойного интеграла
- Вычисление площади поверхности с помощью двойного интеграла
- Тройной интеграл и его свойства
- Вычисление тройного интеграла в декартовой системе координат
- Замена переменных в тройном интеграле
- Вычисление тройного интеграла в цилиндрической и сферической системах координат
- Криволинейные интегралы первого рода. Свойства
- Вычисление криволинейных интегралов первого рода
- Криволинейные интегралы второго рода. Свойства. Вычисление
- Теорема Грина-Римана
- Условие независимости криволинейного интеграла второго рода от пути интегрирования (случай плоской кривой)
- Поверхностный интеграл первого рода. Свойства. Вычисление
- Поверхностный интеграл второго рода. Свойства. Вычисление
- Теорема Остроградского –Гаусса
- Теорема Стокса (без доказательства). Условия независимости криволинейного интеграла от пути интегрирования (случай пространственной кривой)
- Элементы теории поля
- Множество комплексных чисел. Стереографическая проекция
- Дифференцируемость функции комплексного переменного
- Условия Коши-Римана
- Интеграл от функции комплексного переменного. Свойства. Вычисление
- Теоремы Коши для аналитической функции в односвязной области
- Теоремы Коши для аналитической функции в многосвязной области
- Интегральная формула Коши для аналитической функции
- Ряд Тейлора аналитической функции
- Изолированные особые точки аналитической функции
- Вычет в изолированной особой точке
- Вычисление вычетов в изолированной особой точке
- Основная теорема о вычетах
- Ортогональность тригонометрической системы функций
- Ряд Фурье по тригонометрической системе функций . Теорема Дирихле
- Тригонометрический ряд Фурье для четных и нечетных функций
- Тригонометрический ряд Фурье в комплексной форме
- Прямое и обратное преобразование Фурье