Ряд Фурье по тригонометрической системе функций . Теорема Дирихле
Пусть функция абсолютно интегрируема на отрезке , то есть существует . Тогда ей можно поставить в соответствие ее тригонометрический ряд Фурье: . Коэффициенты тригонометрического ряда Фурье называют коэффициентами Фурье и вычисляют по формулам Эйлера-Фурье: . Если функция кусочно-гладкая на отрезке , то ее тригонометрический ряд Фурье сходится в каждой точке этого отрезка. При этом, если - сумма ряда Фурье, то для любого . То есть, если непрерывна в точке , то . Если в точке у разрыв первого рода, то ряд Фурье сходится к среднеарифметическому левого и правого пределов функции в точке .
Дирихле:
Будем говорить, что функция f(t) удовлетворяет условиям Дирихле на отрезке [a,b], если выполняются условия:
f(t) непрерывна на [a,b] или имеет лишь конечное число точек разрыва первого рода.
f(t) монотонна на отрезке [a,b] (подразумевается строгая и нестрогая монотонность), либо функция имеет лишь конечное число экстремумов на [a,b]
Теорема Дирихле.
Пусть f T-периодическая функция и на любом отрезке [a,b] удовлетворяет условиям Дирихле, тогда:
Ряд Фурье сходится на всей числовой оси.
Сумма ряда Фурье равна f(t) во всех точках непрерывности этой функции
В точках разрыва первого рода сумма ряда Фурье равна полусумме левого и правого пределов функции f(t) в этих точках разрыва.
Пусть S(t) сумма ряда Фурье, тогда 3е условие теоремы аналитически записывают следующим образом:
ti – точка разрыва 1го рода.
-
Содержание
- Определение двойного интеграла
- Свойства двойного интеграла
- Приведение двойного интеграла к повторным в случае прямоугольной области
- Приведение двойного интеграла к повторным в случае криволинейной области
- Замена переменных в двойном интеграле
- Вычисление двойного интеграла в полярной системе координат
- Двойной интеграл в полярных координатах
- Вычисление объема с помощью двойного интеграла
- Вычисление площади поверхности с помощью двойного интеграла
- Тройной интеграл и его свойства
- Вычисление тройного интеграла в декартовой системе координат
- Замена переменных в тройном интеграле
- Вычисление тройного интеграла в цилиндрической и сферической системах координат
- Криволинейные интегралы первого рода. Свойства
- Вычисление криволинейных интегралов первого рода
- Криволинейные интегралы второго рода. Свойства. Вычисление
- Теорема Грина-Римана
- Условие независимости криволинейного интеграла второго рода от пути интегрирования (случай плоской кривой)
- Поверхностный интеграл первого рода. Свойства. Вычисление
- Поверхностный интеграл второго рода. Свойства. Вычисление
- Теорема Остроградского –Гаусса
- Теорема Стокса (без доказательства). Условия независимости криволинейного интеграла от пути интегрирования (случай пространственной кривой)
- Элементы теории поля
- Множество комплексных чисел. Стереографическая проекция
- Дифференцируемость функции комплексного переменного
- Условия Коши-Римана
- Интеграл от функции комплексного переменного. Свойства. Вычисление
- Теоремы Коши для аналитической функции в односвязной области
- Теоремы Коши для аналитической функции в многосвязной области
- Интегральная формула Коши для аналитической функции
- Ряд Тейлора аналитической функции
- Изолированные особые точки аналитической функции
- Вычет в изолированной особой точке
- Вычисление вычетов в изолированной особой точке
- Основная теорема о вычетах
- Ортогональность тригонометрической системы функций
- Ряд Фурье по тригонометрической системе функций . Теорема Дирихле
- Тригонометрический ряд Фурье для четных и нечетных функций
- Тригонометрический ряд Фурье в комплексной форме
- Прямое и обратное преобразование Фурье