logo
Дифференциальные-уравнения-1го-порядка

§ 6. Обобщенное однородное уравнение.

Уравнение M(x,y)dx+N(x,y)dy=0 называется обобщенным однородным, если удается подобрать такое число k, что левая часть этого уравнения становится однородной функцией некоторой степени m относительно x, y, dx и dy при условии, что x считается величиной первого измерения, ykго измерения, dx и dyсоответственно нулевого и (k-1)-го измерений. Например, таким будет уравнение . (6.1)

Действительно при сделанном предположении относительно измерений

x, y, dx и dy члены левой части иdy будут иметь соответственно измерения -2, 2k и k-1. Приравнивая их, получаем условие, которому должно удовлетворять искомое число k: -2 = 2k = k-1. Это условие выполняется при k = -1 (при таком k все члены левой части рассматриваемого уравнения будут иметь измерение -2). Следовательно, уравнение (6.1) является обобщенным однородным.

Обобщенное однородное уравнение приводится к уравнению с разделяющимися переменными с помощью подстановки , гдеz – новая неизвестная функция. Проинтегрируем указанным методом уравнение (6.1). Так как k = -1, то , после чего получаем уравнение.

Интегрируя его, находим , откуда. Это общее решение уравнения (6.1).

Yandex.RTB R-A-252273-3