§ 4. Однородные дифференциальные уравнения 1-го порядка.
Определение 1. Уравнение 1-го порядка называется однородным, если для его правой части при любыхсправедливо соотношение, называемое условием однородности функции двух переменных нулевого измерения.
Пример 1. Показать, что функция - однородная нулевого измерения.
Решение.
,
что и требовалось доказать.
Теорема. Любая функция - однородна и, наоборот, любая однородная функциянулевого измерения приводится к виду.
Доказательство.
Первое утверждение теоремы очевидно, т.к. . Докажем второе утверждение. Положим, тогда для однородной функции, что и требовалось доказать.
Определение 2. Уравнение (4.1)
в котором M и N – однородные функции одной и той же степени, т.е. обладают свойством при всех, называется однородным.
Очевидно, что это уравнение всегда может быть приведено к виду (4.2) , хотя для его решения можно этого и не делать.
Однородное уравнение приводится к уравнению с разделяющимися переменными с помощью замены искомой функции y по формуле y=zx, где z(x) – новая искомая функция. Выполнив эту подстановку в уравнении (4.2), получим: илиили.
Интегрируя, получаем общий интеграл уравнения относительно функции z(x) , который после повторной заменыдает общий интеграл исходного уравнения. Кроме того, если- корни уравнения, то функции- решения однородного заданного уравнения. Если же, то уравнение (4.2) принимает вид
и становится уравнением с разделяющимися переменными. Его решениями являются полупрямые: .
Замечание. Иногда целесообразно вместо указанной выше подстановки использовать подстановку x=zy.
Yandex.RTB R-A-252273-3- Дифференциальные уравнения.
- § 1. Основные понятия об обыкновенных дифференциальных уравнениях.
- § 2. Обыкновенные дифференциальные уравнения 1-го порядка – основные понятия.
- § 3. Дифференциальные уравнения 1-го порядка с разделяющимися переменными.
- § 4. Однородные дифференциальные уравнения 1-го порядка.
- § 5. Дифференциальные уравнения, приводящиеся к однородным.
- § 6. Обобщенное однородное уравнение.
- § 7. Линейные дифференциальные уравнения 1-го порядка.
- § 8. Уравнение Бернулли.
- § 9. Дифференциальные уравнения в полных дифференциалах.
- Доказательство.
- § 10. Интегрирующий множитель.