logo
Дифференциальные-уравнения-1го-порядка

§ 1. Основные понятия об обыкновенных дифференциальных уравнениях.

Определение 1. Обыкновенным дифференциальным уравнением n – го порядка для функции y аргумента x называется соотношение вида

(1.1),

где F – заданная функция своих аргументов. В названии этого класса математических уравнений термин «дифференциальное» подчеркивает, что в них входят производные (функции, образованные как результат дифференцирования); термин – «обыкновенное» говорит о том, что искомая функция зависит только от одного действительного аргумента.

Обыкновенное дифференциальное уравнение может не содержать в явном виде аргумент x, искомую функцию и любые ее производные, но старшая производная обязана входить в уравнение n-го порядка. Например

а) – уравнение первого порядка;

б) – уравнение третьего порядка.

При написании обыкновенных дифференциальных уравнений часто используются обозначения производных через дифференциалы:

в) – уравнение второго порядка;

г) – уравнение первого порядка,

образующее после деления на dx эквивалентную форму задания уравнения: .

Функция называется решением обыкновенного дифференциального уравнения, если при подстановке в негооно обращается в тождество.

Например, уравнение 3-го порядка

имеет решение .

Найти тем или иным приемом, например, подбором, одну функцию, удовлетворяющую уравнению, не означает решить его. Решить обыкновенное дифференциальное уравнение – значит найти все функции, образующие при подстановке в уравнение тождество. Для уравнения (1.1) семейство таких функций образуется с помощью произвольных постоянных и называется общим решением обыкновенного дифференциального уравнения n-го порядка, причем число констант совпадает с порядком уравнения: Общее решение может быть, и не разрешено явно относительноy(x): В этом случае решение принято называть общим интегралом уравнения (1.1).

Например, общим решением дифференциального уравнения является следующее выражение:, причем второе слагаемое может быть записано и как, так как произвольная постоянная, делённая на 2, может быть заменена новой произвольной постоянной.

Задавая некоторые допустимые значения всем произвольным постоянным в общем решении или в общем интеграле, получаем определенную функцию, уже не содержащую произвольных констант. Эта функция называется частным решением или частным интегралом уравнения (1.1). Для отыскания значений произвольных постоянных, а следовательно, и частного решения, используются различные дополнительные условия к уравнению (1.1). Например, могут быть заданы так называемые начальные условия при (1.2)

В правых частях начальных условий (1.2) заданы числовые значения функции и производных, причем, общее число начальных условий равно числу определяемых произвольных констант.

Задача отыскания частного решения уравнения (1.1) по начальным условиям называется задачей Коши.

Yandex.RTB R-A-252273-3