§ 2. Обыкновенные дифференциальные уравнения 1-го порядка – основные понятия.
Обыкновенное дифференциальное уравнение 1-го порядка (n=1) имеет вид: или, если его удается разрешить относительно производной:. Общее решениеy=y(x,С) или общий интеграл уравнения 1-го порядка содержат одну произвольную постоянную. Единственное начальное условие для уравнения 1-го порядкапозволяет определить значение константы из общего решения или из общего интеграла. Таким образом, будет найдено частное решение или, что тоже, будет решена задача Коши. Вопрос о существовании и единственности решения задачи Коши является одним из центральных в общей теории обыкновенных дифференциальных уравнений. Для уравнения 1-го порядка, в частности, справедлива теорема, принимаемая здесь без доказательства.
Теорема 2.1. Если в уравнении функцияи ее частная производнаянепрерывны в некоторой областиD плоскости XOY , и в этой области задана точка , то существует и притом единственное решение, удовлетворяющее как уравнению, так и начальному условию.
Геометрически общее решение уравнения 1-го порядка представляет собой семейство кривых на плоскости XOY, не имеющих общих точек и отличающихся друг от друга одним параметром – значением константы C. Эти кривые называются интегральными кривыми для данного уравнения. Интегральные кривые уравнения обладают очевидным геометрическим свойством: в каждой точкетангенс угла наклона касательной к кривой равен значению правой части уравнения в этой точке:. Другими словами, уравнениезадается в плоскостиXOY поле направлений касательных к интегральным кривым. Замечание: Необходимо отметить, что к уравнению приводится уравнениеи так называемое уравнение в симметрической форме.
Yandex.RTB R-A-252273-3- Дифференциальные уравнения.
- § 1. Основные понятия об обыкновенных дифференциальных уравнениях.
- § 2. Обыкновенные дифференциальные уравнения 1-го порядка – основные понятия.
- § 3. Дифференциальные уравнения 1-го порядка с разделяющимися переменными.
- § 4. Однородные дифференциальные уравнения 1-го порядка.
- § 5. Дифференциальные уравнения, приводящиеся к однородным.
- § 6. Обобщенное однородное уравнение.
- § 7. Линейные дифференциальные уравнения 1-го порядка.
- § 8. Уравнение Бернулли.
- § 9. Дифференциальные уравнения в полных дифференциалах.
- Доказательство.
- § 10. Интегрирующий множитель.