logo
реферат по математике (2)

Кардиоиды

Кардиоида (рис. 3) — плоская линия, которая описывается фиксированной точкой окружности, катящейся по неподвижной окружности с таким же радиусом. Получила своё название из-за схожести своих очертаний со стилизованным изображением сердца.

Кардиоида является частным случаем улитки Паскаля, эпициклоиды и синусоидальной спирали.

Так же можно сказать, что Кардиоида - это плоская кривая, описываемая точкой М окружности, которая извне касается неподвижной окружности того же радиуса и катится по ней без скольжения. Принадлежит к эпициклоидам (плоская кривая, описываемая точкой окружности, которая извне касается неподвижной окружности и катится по ней без скольжения, к ним относятся кардиоиды, циклоиды, гипоциклоиды). Является алгебраической кривой второго порядка.

Уравнения кардиоиды:

x = 2rcost (1 + cost)

y = 2rsint (1 + cost)

равна: s = 8a;

равна: .

Свойства кардиоиды:

1. Касательная в произвольной точке кардиоиды проходит через точку окружности производящего круга, диаметрально противоположной точке касания кругов, а нормаль — через точку их касания;

2. Угол, составляемый касательной к кардиоиде с радиус-вектором точки касания, равен половине угла, образуемого этим радиус-вектором с полярной осью;

3. Касательные к кардиоиде, проведенные в концах хорды, проходящей через полюс, взаимно перпендикулярны.

Yandex.RTB R-A-252273-3