Доказательство утверждений методом математической индукции.
Математическая индукция — метод математического доказательства, используется чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 — база (базис) индукции, а затем доказывается, что, если верно утверждение с номером n, то верно и следующее утверждение с номером n + 1 — шаг индукции, или индукционный переход.
Доказательство по индукции наглядно может быть представлено в виде так называемого принципа домино. Пусть какое угодно число косточек домино выставлено в ряд таким образом, что каждая косточка, падая, обязательно опрокидывает следующую за ней косточку (в этом заключается индукционный переход). Тогда, если мы толкнём первую косточку (это база индукции), то все косточки в ряду упадут.
Полная индукция – это такой метод доказательства, при котором истинность утверждения следует из истинности его во всех частных случаях. Задача. Доказать, что каждое составное число, большее 4, но меньшее 20, представимо в виде суммы двух простых чисел. Решение: вспомним определение простого и составного числа. Простым называется такое натуральное число, которое делится только на 1 и на себя. Числа 2,13,5,17 – простые. Числа, которые имеют более двух делителей, называются составными. Число 1 не является ни простым, ни составным. В данной задаче рассматривается множество чисел, которые больше 4, но меньше 20. Составными в нем будут числа: 6,8,9,10,12,14,15,16,18. Каждое из них можно представить в виде суммы двух простых чисел: 6=3+3; 8=5+3; 9=7+2 и т.д. Так как данное утверждение истинно во всех частных случаях, то оно доказано.
- Операции над множествами. Свойства операций, их иллюстрации с помощью диаграмм Эйлера.
- Декартово произведение множеств. Способы задания множеств и наглядности представления. Свойства декартово произведения.
- Число элементов и объединения, разности, декартовом произведении множества.
- Теоретико-множественный смысл сложения, вычитания.
- Теоретико-множественный умножения и деления целых неотрицательных чисел.
- Теоретико-множественный смысл арифметических операций в множестве z свойств.
- Аксиоматический метод в математике. Требования к системе аксиом.
- Система аксиом Пеано. Аксиоматические определение натурального числа.
- Наименьший элемент
- Умножение натуральных чисел в аксиоматической теории. Законы умножения.
- Свойства множества натуральных чисел.
- Вычитание и деление в аксиоматической теории. Основные свойства.
- Множество целых неотрицательных чисел.
- Деление с остатком.
- Предмет и значение логики. Понятие. Объем и содержание понятия. Основные операции над понятиями.
- Определение понятий. Виды определения понятий. Требования к правильному определению понятий.
- Простые суждения. Структура простого высказывания. Классификация простых высказываний.
- Состав простого суждения
- Сложные высказывания. Логические операции : отрицание простых и сложных высказываний. Таблицы истинности.
- Отношение логического следования и логической равносильности. Теорема. Структура теоремы и виды теорем.
- Умозаключения. Общая характеристика и виды умозаключений.
- Основные правила построения умозаключений . Проверка правильности умозаключений.
- Индуктивные умозаключения и их виды. Умозаключения по аналогии.
- Доказательство математических утверждений. Структура доказательства. Непрямое доказательство.
- Доказательство утверждений методом математической индукции.