Графы и ориентированные графы
(АНАЛОГИИ И ОТЛИЧИЯ)
Пусть D = (V, A) – орграф | Пусть G = (V, E) – граф |
Путь в D – последовательность вершин и дуг u1, a1, u2, a2,..., ut, at, ut+1 , где t0, причем каждая вершина ui V, а каждая дуга ai A, и ai всегда является дугой (ui, ui+1). Путь обычно записывается последовательностью вершин u1, u2, ..., ut, ut+1. | Цепь в G – последовательность вершин и ребер u1, e1, u2, e2,..., ut, et, ut+1, где t0, причем каждая вершина ui V, а каждое ребро ei E, и ei всегда является ребром (ui, ui+1). Цепь обычно записывается последовательностью вершин u1, u2, ..., ut, ut+1. Цепь = маршрут без повторений (каждое ребро проходится лишь один раз). |
Полупуть в D – последовательность вершин и дуг u1, a1, u2, a2,..., ut, at, ut+1, где t0, причем каждая вершина ui V, а каждая дуга ai A, и ai всегда является либо дугой (ui, ui+1), либо дугой (ui+1, ui). Полупуть также обычно записывается последовательностью вершин u1, u2, ..., ut, ut+1. |
Аналогия — та же цепь (см. выше)
В определении полуцепи нет смысла — полуцепь всегда совпадает с соответствующей цепью.
|
Полный путь или полный полупуть в D – путь или полупуть, проходящий через все вершины D. | Полная цепь или полная полуцепь в G – цепь или полуцепь, проходящая через все вершины G. |
Простым путем или простым полупутем в D называется путь или полупуть без повторяющихся вершин. | Простой цепью в G называется цепь без повторяющихся вершин. |
Замкнутым путем или полупутем в D называется путь или полупуть u1, a1, u2, a2,..., ut, at, ut+1, в котором ut+1=u1. | Замкнутой цепью в G называется цепь u1, u2, ..., ut, ut+1, в которой ut+1=u1. |
Полный замкнутый путь или полный замкнутый полупуть в D – полный путь или полный полупуть, который замкнут. | Полная замкнутая цепь в G – полная цепь, которая замкнута. |
Контуром в D называется замкнутый путь u1, u2, ..., ut, u1, в котором все вершины различны. | Циклом в G называется замкнутая цепь u1, e1, u2, e2,..., ut, et, u1 , в которой все вершины различны. |
Полуконтуром в D называется замкнутый полупуть, u1, a1, u2, a2,..., ut, at, u1, в котором все вершины u1, u2, ..., ut и все дуги a1, a2,..., at различны. | Аналогия — тот же цикл (см. выше) В определении полуцикла нет смысла — полуцикл всегда совпадает с соответствующим циклом. |
Вершина ui, достижима из вершины uj, если имеется путь из ui в uj. | Вершина ui, достижима из вершины uj, если имеется соединяющая их цепь. |
Вершины ui и uj соединимы, если имеется путь из вершины ui в вершину uj или из вершины uj в вершину ui. | Вершины ui и uj соединимы, если имеется соединяющая их цепь. |
Длиной пути, полупути, простого пути, простого полупути, контура или полуконтура называется число дуг, содержащихся в них. | Длиной цепи, простой цепи или цикла называется число ребер, содержащихся в них. |
Расстояние d(ui, uj) от вершины ui и до вершины uj в D равно длине кратчайшего пути из ui в uj или не определено, если путь из ui в uj отсутствует. Во взвешенном графе длиной и расстоянием обычно называют с учетом веса ( весов). | Расстояние d(ui, uj) от вершины ui и до вершины uj в G равно длине кратчайшей цепи между ui и uj или не определено, если цепь между ними отсутствует. |
26. Основные классы графов: обыкновенный, орграф, псевдограф, мультиграф, сеть.
а — обыкновенный
б — орграф
в — псевдограф
г — мультиграф
д — смешанный граф
е — сеть
- 2. Операции над множествами. Круги Эйлера. Покрытия и разбиения. Классы разбиения.
- 3. Законы алгебры множеств. Формула включений и исключений.
- 5. Соответствия. Способы задания соответствий.
- 6. Инволюция (обращение) соответствий. Объединение, пересечение, дополнение, произведение соответствий.
- 7. Функциональные соответствия, их связь с графиками функций.
- 8. Соответствие Галуа и его роль в проективном распознавании образов. Замкнутое подмножество.
- 9. Отношение. Бинарное отношение. Рефлексивное, симметричное, антисимметричное, асимметричное, транзитивное отношения.
- Унарные:
- Бинарные:
- Соответствия a, b, r
- 10. Отношение эквивалентности. Фактор-множество множества по отношению.
- 11. Отношение предпорядка, упорядоченности, строгой упорядоченности. Отношение частичного порядка.
- 12. Замыкание отношений. Рефлексивное, симметричное, транзитивное замыкание отношений.
- 13. Понятие нечеткого множества. Функция принадлежности. Способы формализации нечетких множеств. Наиболее распространенные параметрические функции принадлежности.
- 14. Основные логические операции над нечеткими множествами и их свойства.
- 15. Диаграмма Хассе как способ задания отношения частичного порядка на множестве.
- 16. Отображения. Изоморфизм. Автоморфизм. Гомоморфизм. Эпиморфизм. Эндоморфизм. Мономорфизм. Биморфизм.
- 17. Бинарная операция и ее основное множество. Способы задания бинарной операции. Таблица Кэли. Операционный квадрат таблицы Кэли.
- 18. Группоид. Квазигруппа. Латинский квадрат. Лупа. Полугруппа. Моноид. Группа. Абелева группа.
- 19. Группа симметрий фигуры.
- 20. Группа подстановок.
- 21. Иерархия систем с двумя бинарными операциями. Кольцо. Тело. Поле (коммутативное тело). Поле Галуа.
- 22. Решетка (структура). Решетка как частично упорядоченное множество.
- 23. Решетка как универсальная алгебра.
- Графы и ориентированные графы
- 27. Виды графов: двудольные графы, регулярные графы, полные графы, деревья, планарные графы
- 28. Изоморфизм графов.
- 29. Способы задания графов.
- 32. Эйлеров путь в графе. Задача о кенигсбергских мостах. Эйлеров цикл. Теорема о существовании эйлерова цикла.
- 33. Алгоритм нахождения эйлерова цикла и его вычислительная сложность.
- 34. Гамильтонов цикл в графе. Алгоритм с возвратом для поиска гамильтонова пути. Оценки вычислительной сложности алгоритма.
- 35. Задача коммивояжера. Алгоритм поиска субоптимального решения.
- 36. Задача построения минимального остовного дерева. Алгоритм Краскала. Алгоритм Прима. Оценка вычислительной сложности этих алгоритмов.
- 37. Перенумерация вершин графа. Алгоритм топологической сортировки.
- 39. Принцип оптимальности Беллмана. Алгоритм нахождения кратчайшего пути в ориентированном графе и его вычислительная сложность.
- 1 Begin
- 40. Алгоритм вычисления расстояний между всеми парами вершин графа. Общий случай.
- 41. Алгоритм нахождения расстояния от источника до всех остальных вершин в графе с неотрицательными весами дуг — метод Дейкстры. Оценка вычислительной сложности.
- 1 Begin
- 5 Begin
- 42. Алгоритм топологической сортировки. Алгоритм нахождения расстояния от источника до всех остальных вершин в графе в случае бесконтурного графа. Оценка вычислительной сложности
- 43. Знаковые графы и их практическое применение. Задачи из области социологии малых групп, экономики и политики.
- 44. Теорема о структуре (теорема Харари о балансе).
- 45. Знаковые орграфы как модель когнитивных карт. Контуры положительной и отрицательной обратной связи и устойчивость/изменчивость моделей на орграфах.
- 46. Двудольные графы. Необходимое и достаточное условие двудольности графа.
- 47. Сети Петри. Функционирование сети Петри. Конечные разметки сети.
- Иллюстрация к правилу срабатывания перехода
- 48. Сети Петри. Ограниченность, безопасность, сохраняемость, достижимость, живость. Моделирование на сетях Петри.
- 50. Конечный автомат как математическая модель устройства с конечной памятью и как управляющая система. Способы описания конечных автоматов: перечислительный; диаграмма состояний; таблица состояний.
- 51. Алгебра логики. Функции алгебры логики. Существенные и несущественные переменные. Бинарные логические операции. Формула. Суперпозиция функций. Таблицы истинности и таблицы Кэли.
- 52. Формы записи операций (функций) — инфиксная, префиксная, постфиксная. Эквивалентные формулы.
- 53. Основные схемы логически правильных рассуждений.
- 54. Функционально полные системы (базисы). Булева алгебра логики. Функциональная полнота системы булевых функций. Примеры других алгебр логики.
- 55. Основные эквивалентные соотношения в булевой алгебре. Выражение через дизъюнкцию, конъюнкцию и отрицание других логических бинарных операций. Двойственность.
- 56. Булева алгебра логики. Сднф и днф. Карта Карно. Функциональные схемы как приложение булевых функций.
- 57. Функции k-значной логики и их задание с помощью таблицы истинности и с помощью таблицы Кэли. Примеры k-значных логик.
- 59. Квантор всеобщности и квантор существования.
- 61. Истинные формулы и эквивалентные соотношения логики предикатов.
- 62. Префиксная нормальная форма. Процедура получения пнф.
- 63. Формальные теории. Принципы построения формальной теории.
- 64. Исчисление высказываний.