32. Эйлеров путь в графе. Задача о кенигсбергских мостах. Эйлеров цикл. Теорема о существовании эйлерова цикла.
Цепь (цикл) в графе G называется Эйлеровым, если она проходит по одному разу через каждое ребро графа G.
Задача, которая привела к появлению понятия Эйлерова цикла, широко известна в истории математики. Это так называемая задача о кенигсбергских мостах. Расположение семи мостов в городе Кенигсберге в начале XVIII века приведено на рисунке 3а. Требуется обойти город, пройдя через каждый мост ровно один раз, и вернуться в исходную точку.
Можно представить описанную задачу следующим образом. Имеется связный неориентированный граф с четырьмя вершинами и семью рёбрами. Требуется выяснить, существует ли простой цикл, позволяющий обойти данный граф по маршруту, включающему в себя по одному разу каждое ребро графа.
Именно решение данной задачи привело Л. Эйлера к доказательству приведённой выше теоремы. Кстати, согласно ей, данная задача неразрешима, поскольку степени всех вершин графа нечётны.
По сути дела, теорема приведенная ниже описывают условия, при которых можно построить геометрическую фигуру “не отрывая карандаша от бумаги”, одной сплошной линией. Только в первом случае начало и конец этой линии будут совпадать, а во втором случае они будут различны.
Эйлеровым путем в графе называется произвольный путь, проходящий через каждое ребро графа в точности один раз, т.е. путь v1, ..., vm+1, такой что каждое ребро e E появляется в последовательности v1, ..., vm+1 в точности один раз как e = {vi, vi+1 } для некоторого i.
Если v1 = vm+1, то такой путь называется эйлеровым циклом. Задача существования эйлерова пути в заданном графе была решена Эйлером в 1736 году, и представленное им необходимое и достаточное условие существования такого пути считается первой в истории теоремой теории графов.
Теорема. Эйлеров путь в графе существует тогда и только тогда, когда граф связный и содержит не более чем две вершины нечетной степени.
Доказательство. Доказательство достаточности условия теоремы будет следствием анализа алгоритма нахождения эйлерова пути, который будет описан ниже. Необходимость условия очевидна, так как если вершина v, отличная от вершины v1 и vm+1, появляется в эйлеровом пути k раз, то это означает, что степень этой вершины в графе составляет 2k. Отсюда следует, что вершины нечетной степени, если они существуют, являются концами эйлерова пути. Здесь следует отметить, что не существует графов с одной только вершиной нечетной степени. Действительно, обозначая степень вершины v через d(v), имеем ибо в указанной сумме каждое ребро {u, v} считается дважды: один раз в d(u) и один раз в d(v). Отсюда следует, что число вершин всегда четно.
Если в связном графе нет вершин нечетной степени, то каждый эйлеров путь является циклом, так как концы эйлерова пути, не являющегося циклом, всегда вершины нечетной степени.
Предположим, что u и v — единственные вершины нечетной степени связного графа G = V, E, и образуем граф G* добавлением дополнительной вершины t и ребер {u, t} и {v, t} (или просто {u, v}, если {u, v} E ). Тогда G* — связный граф без вершин нечетной степени, а эйлеровы пути в G будут в очевидном взаимно однозначном соответствии с эйлеровыми циклами в G*. В силу этого дальше мы будем заниматься только эйлеровыми циклами.
Первые задачи теории графов были связаны с решением математических развлекательных задач и головоломок, например:
задача о кенигсбергских мостах (задача Эйлера), развитие которой привело к циклу задач об обходах графов;
задачи о перевозках, решение которых привело к созданию эффективных методов решения транспортных задач и др.
- 2. Операции над множествами. Круги Эйлера. Покрытия и разбиения. Классы разбиения.
- 3. Законы алгебры множеств. Формула включений и исключений.
- 5. Соответствия. Способы задания соответствий.
- 6. Инволюция (обращение) соответствий. Объединение, пересечение, дополнение, произведение соответствий.
- 7. Функциональные соответствия, их связь с графиками функций.
- 8. Соответствие Галуа и его роль в проективном распознавании образов. Замкнутое подмножество.
- 9. Отношение. Бинарное отношение. Рефлексивное, симметричное, антисимметричное, асимметричное, транзитивное отношения.
- Унарные:
- Бинарные:
- Соответствия a, b, r
- 10. Отношение эквивалентности. Фактор-множество множества по отношению.
- 11. Отношение предпорядка, упорядоченности, строгой упорядоченности. Отношение частичного порядка.
- 12. Замыкание отношений. Рефлексивное, симметричное, транзитивное замыкание отношений.
- 13. Понятие нечеткого множества. Функция принадлежности. Способы формализации нечетких множеств. Наиболее распространенные параметрические функции принадлежности.
- 14. Основные логические операции над нечеткими множествами и их свойства.
- 15. Диаграмма Хассе как способ задания отношения частичного порядка на множестве.
- 16. Отображения. Изоморфизм. Автоморфизм. Гомоморфизм. Эпиморфизм. Эндоморфизм. Мономорфизм. Биморфизм.
- 17. Бинарная операция и ее основное множество. Способы задания бинарной операции. Таблица Кэли. Операционный квадрат таблицы Кэли.
- 18. Группоид. Квазигруппа. Латинский квадрат. Лупа. Полугруппа. Моноид. Группа. Абелева группа.
- 19. Группа симметрий фигуры.
- 20. Группа подстановок.
- 21. Иерархия систем с двумя бинарными операциями. Кольцо. Тело. Поле (коммутативное тело). Поле Галуа.
- 22. Решетка (структура). Решетка как частично упорядоченное множество.
- 23. Решетка как универсальная алгебра.
- Графы и ориентированные графы
- 27. Виды графов: двудольные графы, регулярные графы, полные графы, деревья, планарные графы
- 28. Изоморфизм графов.
- 29. Способы задания графов.
- 32. Эйлеров путь в графе. Задача о кенигсбергских мостах. Эйлеров цикл. Теорема о существовании эйлерова цикла.
- 33. Алгоритм нахождения эйлерова цикла и его вычислительная сложность.
- 34. Гамильтонов цикл в графе. Алгоритм с возвратом для поиска гамильтонова пути. Оценки вычислительной сложности алгоритма.
- 35. Задача коммивояжера. Алгоритм поиска субоптимального решения.
- 36. Задача построения минимального остовного дерева. Алгоритм Краскала. Алгоритм Прима. Оценка вычислительной сложности этих алгоритмов.
- 37. Перенумерация вершин графа. Алгоритм топологической сортировки.
- 39. Принцип оптимальности Беллмана. Алгоритм нахождения кратчайшего пути в ориентированном графе и его вычислительная сложность.
- 1 Begin
- 40. Алгоритм вычисления расстояний между всеми парами вершин графа. Общий случай.
- 41. Алгоритм нахождения расстояния от источника до всех остальных вершин в графе с неотрицательными весами дуг — метод Дейкстры. Оценка вычислительной сложности.
- 1 Begin
- 5 Begin
- 42. Алгоритм топологической сортировки. Алгоритм нахождения расстояния от источника до всех остальных вершин в графе в случае бесконтурного графа. Оценка вычислительной сложности
- 43. Знаковые графы и их практическое применение. Задачи из области социологии малых групп, экономики и политики.
- 44. Теорема о структуре (теорема Харари о балансе).
- 45. Знаковые орграфы как модель когнитивных карт. Контуры положительной и отрицательной обратной связи и устойчивость/изменчивость моделей на орграфах.
- 46. Двудольные графы. Необходимое и достаточное условие двудольности графа.
- 47. Сети Петри. Функционирование сети Петри. Конечные разметки сети.
- Иллюстрация к правилу срабатывания перехода
- 48. Сети Петри. Ограниченность, безопасность, сохраняемость, достижимость, живость. Моделирование на сетях Петри.
- 50. Конечный автомат как математическая модель устройства с конечной памятью и как управляющая система. Способы описания конечных автоматов: перечислительный; диаграмма состояний; таблица состояний.
- 51. Алгебра логики. Функции алгебры логики. Существенные и несущественные переменные. Бинарные логические операции. Формула. Суперпозиция функций. Таблицы истинности и таблицы Кэли.
- 52. Формы записи операций (функций) — инфиксная, префиксная, постфиксная. Эквивалентные формулы.
- 53. Основные схемы логически правильных рассуждений.
- 54. Функционально полные системы (базисы). Булева алгебра логики. Функциональная полнота системы булевых функций. Примеры других алгебр логики.
- 55. Основные эквивалентные соотношения в булевой алгебре. Выражение через дизъюнкцию, конъюнкцию и отрицание других логических бинарных операций. Двойственность.
- 56. Булева алгебра логики. Сднф и днф. Карта Карно. Функциональные схемы как приложение булевых функций.
- 57. Функции k-значной логики и их задание с помощью таблицы истинности и с помощью таблицы Кэли. Примеры k-значных логик.
- 59. Квантор всеобщности и квантор существования.
- 61. Истинные формулы и эквивалентные соотношения логики предикатов.
- 62. Префиксная нормальная форма. Процедура получения пнф.
- 63. Формальные теории. Принципы построения формальной теории.
- 64. Исчисление высказываний.