Потенциал простого слоя
Потенциал поля, созданного зарядами, распределёнными по поверхности с плотностью , равен и называется потенциалом простого слоя.
Свойство 1. Потенциал простого слоя определён всюду.
Если (не принадлежит несущей поверхности ), это очевидно, т.к. имеет конечное значение для любых р.
Если , то интеграл является несобственным по двумерной области . Из математического анализа известно, что несобственный интеграл по двумерной области абсолютно сходится, если , в нашем случае , следовательно, интеграл сходится.
Свойство 2. Потенциал простого слоя и непрерывен всюду.
Если , то интеграл не является не собственным, и его непрерывность следует из непрерывности подынтегральной функции .
Если , то, согласно теореме и замечанию, достаточно доказать равномерную сходимость, интеграла в окрестности точки . Для этого оценим интеграл по части поверхности , содержащей точку и имеющей диаметр меньший, чем . Пусть - произвольная точка, причем: . Пусть - проекция поверхности на плоскость , а круг на плоскости с центром в точке радиуса . Проекция на плоскость элемента поверхности равна: . Оценим:
вводим полярную систему координат с началом в точке , тогда легко вычислить последний интеграл, он равен: .
Достаточно взять для того, чтобы выполнялось неравенство .
Свойство 3. Потенциал простого слоя является гармонической функцией всюду, кроме точек несущей поверхности .
Это свойство очевидно, так как для точек интеграл не является несобственным и поэтому:
Свойство 4. нормальные производные потенциала простого слоя имеют разрыв первого рода в точках поверхности со скачком .
Свойство 5. если несущая поверхность ограничена, то потенциал простого слоя стремится к нулю, когда точка стремится к бесконечности.
Применим к интегралу теорему о среднем: , где - суммарный заряд.
Т.о.
- Оглавление
- Уравнение Лапласа и Пуассона.
- Физический смысл стационарной задачи
- Примеры
- Понятие о потенциалах
- Постановка задач
- Первая и вторая формулы Грина с оператором , следствия.
- Гармонические функции. Интегральное представление. Их основные свойства.
- Примеры
- Свойства гармонических функций.
- Теорема о среднем для гармонических функций
- Теорема о максимумах и минимумах для гармонических функций. Единственность и корректность задач Дирихле.
- Следствия:
- Функция Грина для краевой задачи с уравнением Пуассона. Её построение методом отображений.
- Функция Грина для задачи с уравнением , понятия, определения.
- Решение задач с её помощью
- Построение функции Грина в одномерном случае на отрезке
- Теория потенциалов, определение, основные свойства.
- Объёмный потенциал
- Потенциал простого слоя
- Потенциал двойного слоя
- Решение задач Дирихле с уравнением Пуассона методом теории потенциалов
- Сводная таблица6 общие сведения о потенциалах:
- Понятие о корректно и некорректно поставленных задачах математической физики, примеры.
- Уравнение с оператором с особенностью , свойства, ограниченность, постановка задачи.
- Уравнение Бесселя.
- Особенность, построение ограниченного решения .
- Общее решение, , , , понятие о функциях .
- Асимптотика решений уравнения Бесселя, нули функции Бесселя.
- Краевая задача на собственные значения: , её решение, ортогональность собственных функций, теорема Фурье-Бесселя б/д.
- Модифицированное уравнение Бесселя, ограниченность решения , свойства, общее решение, понятие о функции .
- Сводная таблица.
- Краевая задача с двумя особыми точками на концах отрезка. Граничные условия. Условия самосопряжённости оператора .
- Уравнение гипергеометрического типа.
- Приведение к самосопряжённому виду. Весовые функции . Уравнение для производных(в следующем пункте).
- Решение в виде полиномов. Формула Родрига.
- Ортогональные решения полиномов. Свойства нулей.
- Примеры: уравнения, краевые задачи, определение и свойства полиномов
- Полиномы Лежандра.
- Полиномы Чебышева-Лягера.
- Чебышева-Эрмита.
- Сводная таблица для уравнений гипергеометрического вида.
- Уравнения, краевая задача для присоединенных полином Лежандра. Решения. Основные свойства.
- Уравнение Лапласа в сферических координатах. Схема решения методом разделения переменных.
- Сферические функции, определения, построение системы базисных функций. Ортогональность, полнота, теорема о разложении, б/д.