1.1. Основные понятия и теоремы.
Предмет теории чисел – целые числа и их свойства.
Множество целых чисел обозначается символом Z, символом Z+ обозначается множество целых положительных чисел, символом N – множество натуральных чисел. Латинскими малыми буквами здесь и далее будем обозначать целые числа.
Заметим, что
То есть как сумма, так и произведение целых чисел также являются целыми числами. Частное двух целых чисел не всегда является целым числом.
Если , (b≠0) ,Тогда говорят, чтоа делится на b, или b делит а, и пишут b\a. Тогда а называем кратным числа b, а b – делителем числа а.
Справедливы следующие
Теоремы:
(1) m\a, b\m b\a.
Доказательство:
m\a a=ma1;
b\m m=bm1 a=bm1a1. Обозначив b1=a1m1, получим a=bb1, причем b\a.
□
(2) Если в равенстве вида k+l+…+n=p+q+…+s относительно всех членов кроме одного известно, что они кратны b, то и один оставшийся член тоже кратен b.
Доказательство:
Не нарушая общности, предположим, что таким членом (относительно кратности которого числу b ничего не известно) является k.
Тогда l1, …, n1, p1, q1, …, s1: l=bl1,…, n=bn1, p=bp1, q=bq1, …, s=bs1.
Тогда k=p+q+…+s–l–…–n=bp1+bq1+…+bs1–bl1–…–bn1=b(p1+q1+…+s1–l1–…–n1)
Обозначим k1= p1+q1+…+s1–l1–…–n1. Очевидно, k1 – целое число, причем k=bk1 Тогда, по определению делимости, b\k.
□
Кроме того, очевидны следующие свойства:
1) a\0, 1\a, a\a.
2) a\b, b\a a=±b.
3) a\b, a\c a\(bx+cy).
(Доказательство св-ва 3: b=ab1, c=ac1 bx+cy=ab1x+ac1y=a(b1x+c1y))
Теорема деления (теорема о делении с остатком)
единственная пара чисел 0 ≤r < b: a=bq+r *
Доказательство:
Возьмем q: bq≤a, b(q+1)>a. Такое целое q, очевидно, существует r=a–bq является целым положительным числом как разность двух целых чисел, первое из которых больше второго. Причем выполняется .Построением такого r доказано существование разложения (*).
Теперь докажем единственность разложения (*): предположим, что кроме построенного выше, имеется еще одно разложение числа a:
a=bq1+r1, 0≤r1<b.
Вычтем полученное равенство из равенства (*) почленно. Получим
0=b(q–q1)+(r–r1). **
Поскольку b\0, b\b(q–q1), то по теореме 2, b\(r–r1).
С другой стороны, 0≤r<b, 0≤r1<b |r–r1|<b. Отсюда и из того, что b\(r–r1), следует, что r–r1=0, и тогда r=r1. Подставляя полученное равенство в (**), получаем 0=b(q–q1).
Но по условию теоремы, b≠0 , тогда q–q1=0 q=q1.
Таким образом, оба построенных разложения числа a совпадают, а значит разложение (*) единственно.
□
В разложении (*) число q называются неполным частным, r – остатком от деления a на b.
- Теоретико-числовые методы в криптографии
- Аннотация.
- Предисловие
- Введение
- Глава 1. Основы теории чисел. §1. Теория делимости.
- 1.1. Основные понятия и теоремы.
- 1.2. Наибольший общий делитель.
- 1.3 Нок (наименьшее общее кратное)
- 1.4. Простые числа
- Решето Эратосфена
- 1.5. Единственность разложения на простые сомножители.
- 1.6. Асимптотический закон распределения простых чисел.
- §2. Функция Эйлера.
- 2.1. Мультипликативные функции.
- 2.2. Функция Эйлера.
- §3. Теория сравнений
- 3.1. Свойства сравнений:
- 3.2. Полная система вычетов.
- 3.3. Приведенная система вычетов
- 3.4. Обратный элемент.
- 3.5. Алгебраические структуры на целых числах.
- 3.6. Теоремы Эйлера и Ферма. Тест Ферма на простоту.
- Тест Ферма на простоту
- 3.7. Применение теоремы Эйлера в rsa:
- §4. Сравнения с одним неизвестным
- 4.1. Сравнения первой степени.
- 4.2. Система сравнений первой степени. Китайская теорема об остатках.
- 4.3. Применения китайской теоремы об остатках.
- 4.4. Сравнения любой степени по простому модулю.
- 4.5. Сравнения любой степени по составному модулю.
- §5. Теория квадратичных вычетов
- 5.1. Квадратичные вычеты по простому модулю.
- 5.2. Символ Лежандра. Символ Якоби.
- Свойства символа Лежандра:
- Свойства символа Якоби:
- 5.3. Тест на простоту Соловея-Штрассена.
- Тест Соловея-Штрассена:
- 5.4. Решение квадратичных сравнений по простому модулю.
- 5.5. Квадратичные сравнения по составному модулю.
- 5.6. Тест на простоту Миллера-Рабина.
- 5.7. Связь задач извлечения квадратных корней и факторизации по модулю rsa. Криптосистема Рабина.
- 5.8. Квадраты и псевдоквадраты.
- 5.9. Числа Блюма.
- §6. Первообразные корни и индексы. Порождающий элемент и дискретный логарифм.
- 6.1. Основные понятия и теоремы.
- 6.2. Существование первообразных корней по модулю p.
- 6.3. Первообразные корни по модулям pα, 2pα.
- 6.4. Нахождение первообразных корней по простому модулю.
- 6.5. Существование и количество первообразных корней.
- 6.6. Дискретные логарифмы.
- 6.7. Проблема Диффи-Хеллмана.
- 6.8. Условная стойкость шифра Эль Гамаля.
- §7. Построение доказуемо простых чисел общего и специального вида.
- 7.1. Теорема Сэлфриджа и доказуемо простые числа общего вида на основании полного разложения (n—1).
- 7.2. Теорема Поклингтона и доказуемо простые числа общего вида на основании частичного разложения (n—1).
- 7.3. Числа Ферма. Теорема Пепина.
- 7.4. Числа Мерсенна.
- 7.5. Теорема Диемитко и процедура генерации простых чисел заданной длины гост р 34.10-94.
- Глава 2. Алгебраические основы теории чисел.
- §1. Основные понятия алгебры.
- 1.1. Начальные понятия.
- 1.2. Делимость в кольцах.
- 1.3. Деление с остатком.
- 1.4. Основная теорема арифметики.
- §2. Конечные поля и неприводимые многочлены.
- §3. Кольца многочленов.
- 3.1. Кольца многочленов.
- 3.2. Кольцо многочленов Zp[X].
- 3.3. Конечные поля многочленов.
- Глава 3. Алгоритмы в криптографии и криптоанализе. §1. Элементы теории сложности.
- §2. Алгоритмы факторизации.
- 2.1. Метод пробных делений.
- 2.2. Метод Ферма.
- 2.3. Метод квадратичного решета.
- 2.6. Методы случайных квадратов.
- §3. Алгоритмы дискретного логарифмирования.
- 3.1. Метод прямого поиска.
- 3.2. Шаг младенца – шаг великана.
- 3.4. Алгоритм Полига-Хеллмана.
- 3.5. Алгоритм исчисления порядка (index-calculus algorithm).
- Задачи и упражнения.
- Упражнения к Главе 2.
- Ответы к упражнениям.
- 1. Пояснительная записка
- 1.1. Цели и задачи дисциплины
- 1.2. Требования к уровню освоения содержания дисциплины
- 2. Объем дисциплины и виды учебной работы
- 3. Тематический план изучения дисциплины
- 4. Содержание разделов дисциплины
- 6. Вопросы к экзаменам
- 7.Литература основная:
- Дополнительная:
- Оглавление