1.3. Деление с остатком.
Помните фильм про Буратино и знаменитый диалог Лисы Алисы и Кота Базилио: “Пять на два не делится! Вот тебе, Базилио, один золотой, а вторую неделящуюся половину я забираю себе!” Кот ничего не понял, но почувствовал, что его обманывают.
Что означает «делится», мы выше видели, это когда есть дополнительный множитель и он восстанавливает равенство. А если множителя нет. Тут мы вступаем на зыбкую почву приближений.
При делении целых чисел и многочленов разные числа и многочлены можно легко сравнивать. У чисел сравнение ведется путем сравнения их модулей, а у многочленов – сравнением их степеней. Поэтому при неполном делении стремятся, что бы степень остатка была меньше, чем степень делителя.
Формально понятие степени можно ввести так.
Определение. Пусть К – кольцо без делителей нуля. Степенью элементов кольца К называется отображение ненулевых элементов кольца во множество натуральных чисел такое, что выполняется условие монотонности:Другими словами, степень произведения не меньше степени сомножителя. (Обратим внимание, что для нуля степень не определена!)
Если определено понятие степени элемента, то можно говорить о делении с остатком.
Определение Кольцо К называется кольцом с алгоритмом деления с остатком или евклидовым, еслиилиr=0.
Евклидовых колец не очень много. Нас же будут в основном интересовать два из них.
Пример 1.
Кольцо целых чисел Z является евклидовым, при этом степенью целого числа является его модуль. Алгоритм деления с остатком в кольце целых чисел изучался в школе.
Пример 2.
Пусть P – поле, тогда кольцо многочленов P[x] является евклидовым, при этом степенью является обычная степень многочлена. Алгоритм деления с остатком – обычное деление многочленов уголком.
Сейчас мы докажем самую полезную теорему о евклидовых кольцах, которая применяется чуть не всей классической алгебре и криптографии.
Но прежде введем понятие наибольшего общего делителя (НОД) и двойственное ему наименьше обще кранное (НОК).
Определение. Элемент d=НОД(a,b) называется наибольшим общим делителем элементов a и b, если выполняются два условия:
1) d\a, d\b – т.е. d - общий делить,
2) Если s\a, s\b , то s\d – наибольший делитель, в том смысле, что он делится на все остальные делители.
Понятие наименьшего общего кратного НОК не так важно как НОД, но его введение поучительно в силу свой двойственности к НОД. «Наибольший» заменяется на «наименьший», «делится» на «делит».
Определение. Элемент m=НОК(a,b) называется наименьшим общим кратным элементов a и b, если выполняются два условия:
1) m: a\m, b\m - общий кратный,
2) Если a\n, b\n , то m\n – наименьшее кратное, в том смысле, что оно делит все остальные кратные.
Фундаментальный факт состоит в том, что в евклидовых кольцах, а значит в кольце целых чисел и кольце многочленов над полем, – НОД существует и его можно выразить через исходные элементы.
Теорема (Основная теорем о евклидовых кольцах).
Пусть К – евклидово кольцо, тогда любые элементы имеют наибольший общий делитель и, более того, такие, чтоd=НОД(a,b)=au +bv.
Доказательство.
а) Применяя свойство деления с остатком получим табличку уменьшающихся остатков. Так как степень каждого остатка – натуральное число, а натуральные числа не могут убывать бесконечно, то табличка будет конечной, а последний остаток нулевым.
В нашей табличке получилось n+2 строки. Какой же из участвующих в ней элементов является долгожданным НОД? Это последний ненулевой остаток rn. Для того, чтобы убедиться, что d=rn, нужно проверить оба свойства НОД. Прежде всего, просматривая табличку снизу вверх, убеждаемся, что rn делит a и b. В самом деле, последняя строка нам гарантирует, что rn\rn-1. Из предпоследней строки следует, что rn\rn-2 и т.д. Из третьей строки следует, что rn\r, из второй, что делит b, а из первой, что rn\a.
Теперь проверим, что rn - наибольший делитель, т.е., что он делится на любой s такой, что s\a и s\b. Теперь просматриваем нашу табличку сверху вниз. Из первой строчки следует, что s\r, из второй, что s\r1 и т.д. Из предпоследней строки следует, что s\rn. Таким образом, последняя строка даже не понадобилась.
б) Осталось выразить остаток rn через исходные элементы a и b. Для этого опять просматриваем нашу табличку снизу вверх. Из предпоследней строки получаем rn =rn-2+(-qn)rn-1, из третьей снизу rn-1=rn-3+(-qn-1)rn-2, поэтому
rn=rn-2+(-qn)rn-1=rn-2+(-qn)(rn-3+(-qn-1)rn-2)=rn-2(1+(-qn)(-qn-1))+rn-3(-qn).
Поднимаясь снизу вверх, мы последовательно выразим rn через rn-2 и rn-1, потом через rn-3 и rn-2 и т.д. И, наконец, через a и b.
□
Таким образом, в кольце целых чисел и кольце многочленов над полем всегда можно эффективно найти НОД. Алгоритм, приведенный выше, его называют алгоритмом Евклида, реализован в большинстве компьютерных систем, в том числе и в тех, что используются для нужд криптографии.
Данная теорема имеет массу приложений, например, с ее помощью строятся поля Галуа.
Теорема (Первая теорема о поле Галуа).
Если натуральное число p является простым, то кольцо вычетов Zp на самом деле является полем.
Эта теорема была доказана в п.5 §3 Главы 1 как утверждение.
Упражнение. Найдите обратные по умножению к остатку 5 в полях Z7, Z17, Z127. Проще всего обратный искать по алгоритму Евклида.
- Теоретико-числовые методы в криптографии
- Аннотация.
- Предисловие
- Введение
- Глава 1. Основы теории чисел. §1. Теория делимости.
- 1.1. Основные понятия и теоремы.
- 1.2. Наибольший общий делитель.
- 1.3 Нок (наименьшее общее кратное)
- 1.4. Простые числа
- Решето Эратосфена
- 1.5. Единственность разложения на простые сомножители.
- 1.6. Асимптотический закон распределения простых чисел.
- §2. Функция Эйлера.
- 2.1. Мультипликативные функции.
- 2.2. Функция Эйлера.
- §3. Теория сравнений
- 3.1. Свойства сравнений:
- 3.2. Полная система вычетов.
- 3.3. Приведенная система вычетов
- 3.4. Обратный элемент.
- 3.5. Алгебраические структуры на целых числах.
- 3.6. Теоремы Эйлера и Ферма. Тест Ферма на простоту.
- Тест Ферма на простоту
- 3.7. Применение теоремы Эйлера в rsa:
- §4. Сравнения с одним неизвестным
- 4.1. Сравнения первой степени.
- 4.2. Система сравнений первой степени. Китайская теорема об остатках.
- 4.3. Применения китайской теоремы об остатках.
- 4.4. Сравнения любой степени по простому модулю.
- 4.5. Сравнения любой степени по составному модулю.
- §5. Теория квадратичных вычетов
- 5.1. Квадратичные вычеты по простому модулю.
- 5.2. Символ Лежандра. Символ Якоби.
- Свойства символа Лежандра:
- Свойства символа Якоби:
- 5.3. Тест на простоту Соловея-Штрассена.
- Тест Соловея-Штрассена:
- 5.4. Решение квадратичных сравнений по простому модулю.
- 5.5. Квадратичные сравнения по составному модулю.
- 5.6. Тест на простоту Миллера-Рабина.
- 5.7. Связь задач извлечения квадратных корней и факторизации по модулю rsa. Криптосистема Рабина.
- 5.8. Квадраты и псевдоквадраты.
- 5.9. Числа Блюма.
- §6. Первообразные корни и индексы. Порождающий элемент и дискретный логарифм.
- 6.1. Основные понятия и теоремы.
- 6.2. Существование первообразных корней по модулю p.
- 6.3. Первообразные корни по модулям pα, 2pα.
- 6.4. Нахождение первообразных корней по простому модулю.
- 6.5. Существование и количество первообразных корней.
- 6.6. Дискретные логарифмы.
- 6.7. Проблема Диффи-Хеллмана.
- 6.8. Условная стойкость шифра Эль Гамаля.
- §7. Построение доказуемо простых чисел общего и специального вида.
- 7.1. Теорема Сэлфриджа и доказуемо простые числа общего вида на основании полного разложения (n—1).
- 7.2. Теорема Поклингтона и доказуемо простые числа общего вида на основании частичного разложения (n—1).
- 7.3. Числа Ферма. Теорема Пепина.
- 7.4. Числа Мерсенна.
- 7.5. Теорема Диемитко и процедура генерации простых чисел заданной длины гост р 34.10-94.
- Глава 2. Алгебраические основы теории чисел.
- §1. Основные понятия алгебры.
- 1.1. Начальные понятия.
- 1.2. Делимость в кольцах.
- 1.3. Деление с остатком.
- 1.4. Основная теорема арифметики.
- §2. Конечные поля и неприводимые многочлены.
- §3. Кольца многочленов.
- 3.1. Кольца многочленов.
- 3.2. Кольцо многочленов Zp[X].
- 3.3. Конечные поля многочленов.
- Глава 3. Алгоритмы в криптографии и криптоанализе. §1. Элементы теории сложности.
- §2. Алгоритмы факторизации.
- 2.1. Метод пробных делений.
- 2.2. Метод Ферма.
- 2.3. Метод квадратичного решета.
- 2.6. Методы случайных квадратов.
- §3. Алгоритмы дискретного логарифмирования.
- 3.1. Метод прямого поиска.
- 3.2. Шаг младенца – шаг великана.
- 3.4. Алгоритм Полига-Хеллмана.
- 3.5. Алгоритм исчисления порядка (index-calculus algorithm).
- Задачи и упражнения.
- Упражнения к Главе 2.
- Ответы к упражнениям.
- 1. Пояснительная записка
- 1.1. Цели и задачи дисциплины
- 1.2. Требования к уровню освоения содержания дисциплины
- 2. Объем дисциплины и виды учебной работы
- 3. Тематический план изучения дисциплины
- 4. Содержание разделов дисциплины
- 6. Вопросы к экзаменам
- 7.Литература основная:
- Дополнительная:
- Оглавление