6.1. Основные понятия и теоремы.
При (a,m)=1 существуют положительные γ с условием aγ≡1(mod m). Наименьшее из таких γ называется показатель, которому a принадлежит по модулю m.
В том, что такие γ существуют, можно убедиться, вспомнив теорему Эйлера (γ=φ(m)).
Возвращаясь к основам общей алгебры, в частности, к теории конечных групп, можно сказать, что показатель, которому которому a принадлежит по модулю m есть то же самое, что порядок элемента a в конечной мультипликативной группе <Um, · mod m>. Далее будем обозначать его Om(a).
Поскольку дальнейшие построения будут тесно связаны с группой <Um, · mod m>, то на протяжении текущего параграфа для краткости будем обозначать эту группу как Um.
Докажем несколько важных теорем, описывающих свойства Om(a):
Теорема 1.
Числа 1=a0, a1, a2, … , несравнимы между собой по модулю m.
Доказательство:
Действительно, из того, что al≡ak(mod m), 0 ≤ k < l < Om(a) следовало бы, что al—k≡1(mod m), 0 < k—l < Om(a), что противоречит определению Om(a).
□
Теорема 2.
Пусть δ= Om(a). Тогда aγ≡aβ (mod m) γ≡β(mod δ).
Доказательство:
Из теоремы 1 следует, что если aγ≡aβ (mod m) , то γ≡β(mod δ).
Пусть теперь γ≡β(mod δ) Тогда, по теореме делимости, найдутся такие числа q, w, r: 0 ≤ r < δ, что γ=δ·q+r, β=δ·w+r. Тогда из того, что aδ≡1(mod m) следует, что
aγ≡aδq+r≡(aq)δar≡ar(mod m)
aβ≡aδw+r≡(aw)δar≡ar(mod m)
Что и требовалось доказать.
□
Теорема 3.
Om(a)\φ(m).
Доказательство:
Следует из Теоремы 2 при β=0 и из теоремы Эйлера (aφ(m)≡1(mod m)).
□
Последняя теорема также может быть доказана как следствие из теоремы Лагранжа (порядок любого элемента в группе делит порядок группы) применительно к группе Um.
Числа, принадлежащие показателю φ(m) (если они существуют), называются первообразными корнями по модулю m.
Если a – первообразный корень по модулю m, то согласно Теореме 1, числа 1=a0, a1, a2, … , aφ(m)-1 несравнимы между собой по модулю m, а раз их φ(m) штук, то они образуют приведенную систему вычетов по модулю m. Тогда a есть ни что иное как порождающий элемент группы Um.
Утверждение
Если существует первообразный корень по модулю m, то мультипликативная группа Um является циклической группой.
Доказательство очевидным образом следует из вышесказанного.
Пример 1.
Рассмотрим группу U11=<{1,2,3,4,5,6,7,8,9,10},· mod m>. Порядок этой группы равен φ(11)=10. Найдем порядки всех элементов в этой группе и отыщем порождающий элемент этой группы, если он существует. Для краткости вместо ab mod 11 будем писать просто ab.
1: 10=1, 11=1. O11(1)=1.
2: 20=1, 21=2, 22=4, 23=8, 24=5, 25=10, 26=9, 27=7, 28=3, 29=6, 210=1. O11(2)=10.
3: 30=1, 31=3, 32=9, 33=5, 34=4, 35=1. O11(3)=5.
4: 40=1, 41=4, 42=5, 43=9, 44=3, 45=1. O11(4)=5.
5: 50=1, 51=5, 52=3, 53=4, 54=9, 55=1. O11(5)=5.
6: 60=1, 61=6, 62=3, 63=7, 64=9, 65=10, 66=5, 67=8, 68=4, 69=2, 610=1. O11(6)=10.
7: 70=1, 71=7, 72=5, 73=2, 74=3, 75=10, 76=4, 77=6, 78=9, 79=8, 710=1. O11(7)=10.
8: 80=1, 81=8, 82=9, 83=6, 84=4, 85=10, 86=3, 87=2, 88=5, 89=7, 810=1. O11(8)=10.
9: 90=1, 91=9, 92=4, 93=3, 94=5, 95=1. O11(9)=5.
10: 100=1, 101=10, 102=1. O11(10)=2.
Действительно, порядки всех элементов делят порядок группы. При этом в группе U11 нашлись порождающие элементы, причем не один, а четыре. Это 2, 6, 7 и 8. Однако не во всех группах Um существуют порождающие элементы, убедимся в этом на следующем примере:
Пример 2.
Рассмотрим группу U8=<{1,3,5,7},· mod 8>, φ(8)=4.
1: 10=1, 11=1. O8(1)=1.
3: 30=1, 31=3, 32=1. O8(3)=2.
5: 50=1, 51=5, 52=1. O8(5)=2.
7: 70=1, 71=7, 72=1. O8(7)=2.
Итак, в группе U8 нет порождающего элемента.
Возникает вопрос – в каких группах Um порождающий элемент существует, а в каких – нет, и как найти порождающий элемент? На этот вопрос ответим в следующих пунктах данного параграфа.
- Теоретико-числовые методы в криптографии
- Аннотация.
- Предисловие
- Введение
- Глава 1. Основы теории чисел. §1. Теория делимости.
- 1.1. Основные понятия и теоремы.
- 1.2. Наибольший общий делитель.
- 1.3 Нок (наименьшее общее кратное)
- 1.4. Простые числа
- Решето Эратосфена
- 1.5. Единственность разложения на простые сомножители.
- 1.6. Асимптотический закон распределения простых чисел.
- §2. Функция Эйлера.
- 2.1. Мультипликативные функции.
- 2.2. Функция Эйлера.
- §3. Теория сравнений
- 3.1. Свойства сравнений:
- 3.2. Полная система вычетов.
- 3.3. Приведенная система вычетов
- 3.4. Обратный элемент.
- 3.5. Алгебраические структуры на целых числах.
- 3.6. Теоремы Эйлера и Ферма. Тест Ферма на простоту.
- Тест Ферма на простоту
- 3.7. Применение теоремы Эйлера в rsa:
- §4. Сравнения с одним неизвестным
- 4.1. Сравнения первой степени.
- 4.2. Система сравнений первой степени. Китайская теорема об остатках.
- 4.3. Применения китайской теоремы об остатках.
- 4.4. Сравнения любой степени по простому модулю.
- 4.5. Сравнения любой степени по составному модулю.
- §5. Теория квадратичных вычетов
- 5.1. Квадратичные вычеты по простому модулю.
- 5.2. Символ Лежандра. Символ Якоби.
- Свойства символа Лежандра:
- Свойства символа Якоби:
- 5.3. Тест на простоту Соловея-Штрассена.
- Тест Соловея-Штрассена:
- 5.4. Решение квадратичных сравнений по простому модулю.
- 5.5. Квадратичные сравнения по составному модулю.
- 5.6. Тест на простоту Миллера-Рабина.
- 5.7. Связь задач извлечения квадратных корней и факторизации по модулю rsa. Криптосистема Рабина.
- 5.8. Квадраты и псевдоквадраты.
- 5.9. Числа Блюма.
- §6. Первообразные корни и индексы. Порождающий элемент и дискретный логарифм.
- 6.1. Основные понятия и теоремы.
- 6.2. Существование первообразных корней по модулю p.
- 6.3. Первообразные корни по модулям pα, 2pα.
- 6.4. Нахождение первообразных корней по простому модулю.
- 6.5. Существование и количество первообразных корней.
- 6.6. Дискретные логарифмы.
- 6.7. Проблема Диффи-Хеллмана.
- 6.8. Условная стойкость шифра Эль Гамаля.
- §7. Построение доказуемо простых чисел общего и специального вида.
- 7.1. Теорема Сэлфриджа и доказуемо простые числа общего вида на основании полного разложения (n—1).
- 7.2. Теорема Поклингтона и доказуемо простые числа общего вида на основании частичного разложения (n—1).
- 7.3. Числа Ферма. Теорема Пепина.
- 7.4. Числа Мерсенна.
- 7.5. Теорема Диемитко и процедура генерации простых чисел заданной длины гост р 34.10-94.
- Глава 2. Алгебраические основы теории чисел.
- §1. Основные понятия алгебры.
- 1.1. Начальные понятия.
- 1.2. Делимость в кольцах.
- 1.3. Деление с остатком.
- 1.4. Основная теорема арифметики.
- §2. Конечные поля и неприводимые многочлены.
- §3. Кольца многочленов.
- 3.1. Кольца многочленов.
- 3.2. Кольцо многочленов Zp[X].
- 3.3. Конечные поля многочленов.
- Глава 3. Алгоритмы в криптографии и криптоанализе. §1. Элементы теории сложности.
- §2. Алгоритмы факторизации.
- 2.1. Метод пробных делений.
- 2.2. Метод Ферма.
- 2.3. Метод квадратичного решета.
- 2.6. Методы случайных квадратов.
- §3. Алгоритмы дискретного логарифмирования.
- 3.1. Метод прямого поиска.
- 3.2. Шаг младенца – шаг великана.
- 3.4. Алгоритм Полига-Хеллмана.
- 3.5. Алгоритм исчисления порядка (index-calculus algorithm).
- Задачи и упражнения.
- Упражнения к Главе 2.
- Ответы к упражнениям.
- 1. Пояснительная записка
- 1.1. Цели и задачи дисциплины
- 1.2. Требования к уровню освоения содержания дисциплины
- 2. Объем дисциплины и виды учебной работы
- 3. Тематический план изучения дисциплины
- 4. Содержание разделов дисциплины
- 6. Вопросы к экзаменам
- 7.Литература основная:
- Дополнительная:
- Оглавление