Введение
Задачи математического программирования
В последнее время большой интерес вызывает наука о принятии решений. Как в жизни отдельного человека, так и в повседневной деятельности организаций принятие решений является важнейшим этапом, который определяет их будущее. В условиях рыночных отношений принятие непродуманных решений, без научной проработки проблемы, может привести к тяжким последствиям, а в экономике особенно.
Моделирование позволяет из множества вариантов возможных решений выбрать один, и этот выбор должен быть обоснован. Вы уже знакомы с ситуационным моделированием (этому была посвящена 1 часть учебного пособия), сейчас вашему вниманию предлагается еще одна технология системного анализа – математическое моделирование. Умение построить математическую модель задачи в некоторых случаях является единственным способом решить ее.
Исследование различных, в том числе и экономических, процессов обычно начинается с их моделирования, т.е. отражения реального процесса через математические соотношения. При этом производится составление уравнений или неравенств, связывающих различные показатели (переменные) исследуемого процесса, которые образуют систему ограничений. В этих соотношениях выделяются такие переменные, меняя которые, можно получить оптимальное значение основного показателя данной системы (прибыль, доход, затраты и т.п.). Соответствующие методы, позволяющие решать указанные задачи, объединяются в общее название «математическое программирование» или «математический метод» исследования операций.
Математическое программирование включает в себя такие разделы математики как линейное, нелинейное и динамическое программирование. Сюда же обычно относят стохастическое программирование, теорию игр, теорию массового обслуживания, теорию управления запасами и некоторые другие.
Методами математического программирования решаются задачи распределения ресурсов, планирования выпуска продукции, ценообразования, транспортные задачи и т.п.
Математическое программирование - это раздел математики, занимающийся решением задач, связанных с нахождением экстремальных значений функций, на аргументы которых наложены ограничения.
Слово программирование заимствовано из зарубежной литературы, где использовалось в смысле «планирование».
В лабораторных работах мы будем заниматься решением задач линейного программирования, поскольку это наиболее распространенные задачи и для их решения достаточно встроенных возможностей математического моделирования среды Microsoft Excel. Для решения же задач из других разделов математического программирования требуется хорошая математическая подготовка и умение работать в специально ориентированных математических пакетах MathCAD 8 (Maple 6).
Характерные черты задач линейного программирования следующие:
1. показатель эффективности L представляет собой линейную функцию от элементов решения ;
2. ограничительные условия, налагаемые на возможные решения, имеют вид линейных равенств или неравенств.
В общей форме записи модель задачи линейного программирования имеет вид:
целевая функция
,
при ограничениях
(1)
Допустимое решение (или план) - это совокупность чисел , удовлетворяющих ограничениям задачи (1).
Оптимальный план - это план , при котором целевая функция принимает свое максимальное (минимальное) значение.
Целевая функция L, максимум (минимум) которой требуется определить, вместе с системой неравенств и условием неотрицательности образуют математическую модель задачи.
Отметим, что в задачах линейного программирования ограничения могут быть выражены не только неравенствами (строгими или нестрогими), но и равенствами.
Задачи подобного типа решаются в курсе высшей математики с использованием специальных математических приемов, но прикладные задачи математического программирования обычно содержат большое количество переменных, поэтому их решение без помощи ЭВМ весьма затруднительно.
Лабораторная работа 1
Решение типовых задач линейного программирования
С помощью этой лабораторной работы Вы сможете:
-
научиться строить математические модели для задач линейного программирования;
-
освоить технологию решения типовых задач линейного программирования (ЛП) в табличном редакторе Microsoft Excel.
-
Решение задачи о дневном рационе
-
Постановка задачи
-
Для сохранения здоровья и работоспособности человек должен потреблять в сутки определенное количество белков, жиров, углеводов, воды и витаминов (см. табл. 1). Предположим (для простоты решения задачи), что дневной рацион человека составляется из трех продуктов — П1, П2, П3. Стоимость этих продуктов задана в табл. 1. Запасы ингредиентов в различных продуктах различны (см. табл. 1). Следует таким образом определить дневной рацион, чтобы стоимость рациона была наименьшей, но при этом в рационе содержалось необходимое количество питательных веществ.
Таблица 1
- Оглавление
- Преподавателю: как использовать это пособие
- Тому, кто хочет научиться
- Введение
- Сводная таблица условий задачи о дневном рационе
- Построение модели
- 1 Этап. Определение переменных, для которых будет составляться математическая модель.
- 2 Этап. Формирование целевой функции.
- 3 Этап. Формирование системы ограничений.
- Нахождение решения задачи о дневном рационе средствами Microsoft Excel
- Формулы, описывающие ограничения модели
- Решение задачи о выпуске продукции
- Постановка задачи
- Сводная таблица
- Построение модели
- 1 Этап. Определение переменных, для которых будет составляться математическая модель.
- 2 Этап. Формирование целевой функции.
- 3 Этап. Формирование системы ограничений.
- Нахождение решения задачи о выпуске продукции средствами Microsoft Excel
- Резюме:
- Контрольные задания
- Контрольное задание №1
- Вариант 1
- Вариант 2
- Вариант 3
- Вариант 4
- Вариант 5
- Вариант 6
- Вариант 7
- Вариант 8
- Вариант 9
- Вариант 10
- Вариант 11
- Вариант 12
- Вопросы для самоконтроля
- Лабораторная работа 2 Анализ чувствительности задач линейного программирования
- Теоретическая часть
- Анализ оптимального решения на чувствительность в Excel
- Исходные данные
- Резюме:
- Контрольные задания
- Вопросы для самоконтроля
- Лабораторная работа 3 Решение транспортной задачи
- Теоретическая часть
- Общий вид транспортной матрицы
- Решение транспортных задач
- Решение сбалансированной транспортной задачи
- Исходные данные транспортной задачи (транспортная матрица)
- Построение модели
- Нахождение решения транспортной задачи в Microsoft Excel
- Формулы экранной формы задачи
- Решение несбалансированной транспортной задачи
- Транспортные расходы по доставке муки (руб./т)
- Построение модели
- 1 Шаг. Определение переменных
- 2 Шаг. Проверка сбалансированности задачи
- 3 Шаг. Построение сбалансированной транспортной матрицы
- Транспортная матрица задачи
- 4 Шаг. Задание целевой функции
- 5 Шаг. Задание ограничений
- Нахождение решения транспортной задачи в Microsoft Excel
- Формулы экранной формы задачи
- Резюме:
- Контрольное задание
- Вариант 1
- Вариант 2
- Вариант 3
- Вариант 4
- Вариант 5
- Вариант 6
- Вариант 7
- Вариант 8
- Вариант 9
- Вариант 10
- Вариант 11
- Вариант 12
- Вопросы для самоконтроля
- Лабораторная работа 4 Решение задачи о назначениях
- Теоретическая часть
- Общий вид транспортной матрицы задачи о назначениях
- Решение задачи о назначениях
- Постановка задачи о назначениях
- Компетентность новых сотрудников
- Компетентность прежних сотрудников
- Рекомендации к решению задачи о назначениях
- Построение модели для задачи
- Транспортная матрица задачи о назначениях
- 1 Шаг. Определение переменных
- 2 Шаг. Проверка сбалансированности задачи
- 3 Шаг. Построение сбалансированной транспортной матрицы
- Сбалансированная транспортная матрица задачи о назначениях
- 4 Шаг. Задание целевой функции
- 5 Шаг. Задание ограничений
- Нахождение решение задачи о назначениях средствами Excel
- Контрольное задание
- Номера сотрудников и мест их работы для конкретного варианта
- Компетентность новых сотрудников
- Компетентность прежних сотрудников
- Вопросы для самоконтроля
- Лабораторная работа 5 Организация оптимальной системы снабжения
- Постановка задачи
- Рекомендации к решению задачи
- Построение модели и решение задачи
- Параметры перевозок из оптовых баз к потребителям
- Параметры перевозок от изготовителей к оптовым базам
- Параметры перевозок от изготовителей к потребителям
- Транспортная матрица для способа №1
- Сбалансированная транспортная матрица для способа №1
- Контрольное задание
- Параметры перевозок из оптовых баз к потребителям
- Параметры перевозок от изготовителей к оптовым базам
- Параметры перевозок от изготовителей к потребителям
- Вопросы для самоконтроля
- Литература