logo
Применение производной при нахождении предела

1. Бесконечно малые и их сравнения; символы "o малое" и "о большое"

Определение. Бесконечно малой в x0 называется функция f (x) такая, что

Свойства бесконечно малых функций:

1) Критерий существования конечного предела функции

б. м. функция (x) при xx0: f (x) =A+ (x)

2) (x), (x) б. м. (x) + (x) б. м.

3) Произведение бесконечно малой функции на ограниченную является бесконечно малой функцией.

4) Произведение бесконечно малых функций является бесконечно малой функцией.

Определение. f (x) определенная в проколотой окрестности x0 называется бесконечно большой в т. x0, если .

5) Если (x) б. м. при xx0 и (x) 0, то 1/ (x) является бесконечно большой и наоборот. Символически это записывают в виде 1/=0, 1/0=.

Сравнение бесконечно малых и бесконечно больших функций. Символы O, o

f,g определенны в некоторой проколотой окрестности x0

Пишут

,

Если

.

Аналогично определяется O при xx0+0, xx0 - 0, x, x.

Пример: f (x) =O (1),x означает локальную ограниченность функции в .

Опр. Если при xx0, f (x) =O (g) и g (x) =O (f), то f (x), g (x) называются функциями одного порядка.

Пример: Функции x3,x2 являются функциями одного порядка при x1.

Определение o. Пусть f (x), g (x) определенны в некоторой проколотой окрестности точки x0, пишут f (x) =o (g (x)), xx0, если

б. м. (x) при xx0, такая, чтоx: f (x) = (x) g (x)

Аналогично определяется o при xx0+0, xx0 - 0, x, x.

Пример: f (x) =o (1), при xx0 означает, что f (x) бесконечно малая при xx0.

Некоторые примеры работы с символами o (подразумевается x0).

o (xn) o (xn) = o (xn)

xm o (xn) = o (xn+m)

c o (xn) = o (xn) (c-константа)

o (xn) o (xn+p) = o (xn), здесь p натуральное.

o (xn+p) /xp= o (xn) В частности, o (xp) /xp= o (1).

o (an xn an+1 xn+1… an+p xn+p) = o (xn)

Если , б. м. и =o (), то говорят, что бесконечно малая более высокого порядка, чем .

Определение. Функции f (x), g (x) называются эквивалентными в x0 (говорят так же, в окрестности x0), если выполнено хотя бы одно из двух условий

f (x) =g (x) +o (g (x)), xx0

g (x) =f (x) +o (f (x)), xx0.

Условие эквивалентности записывается в виде fg, при xx0.

Замечание 1. Если выполнено одно из этих условий, то будет выполнено и второе.

Замечание 2. Эти условия можно записать в другой форме. Например, первое из них: в некоторой проколотой окрестности точки имеет место равенство

f (x) =h (x) g (x), =1.

Замечание 3. Если, например, g (x) 0, то первое условие можно записать в виде

.

Определение. Если f (x) (x-x0) n при xx0, то f (x) называется бесконечно малой порядка n при xx0.

Если f (x) при xx0, то f (x) называется бесконечно большой порядка n при xx0.

Если f (x) бесконечно большая при x и f (x) эквивалентна xn при x, то f (x) называется бесконечно большой порядка n при x.

Замечание. Если f (x) бесконечно малая порядка n, то 1/f (x) будет бесконечно большой порядка n и наоборот.

Примеры. Определить характер функций

, в 0, 1,+.

При вычислении пределов полезна следующая теорема

Теорема 2. Пусть f эквивалентна f1, g эквивалентна g1 при xx0.

Если существует предел , тогда существует и .

Если существует предел , тогда существует и .

Определение. Если , то g называется главной частью f при x x0.