Диаграммы Хассе
Диаграмма Хассе – это графическое изображение конечных частично или линейно упорядоченных множеств.
Пусть М – упорядоченное множество и элементы x, yM, причем x<y. Говорят, что y покрывает x, если не существует элемента zM такого, что x z y.
На диаграмме Хассе элементы множества М изображаются в виде точек. Две точки x и y соединяются отрезком прямой в том и только том случае, когда y покрывает x. При этом точку x рисуют ниже точки y.
Примеры.
1) M ={ 1, 2, 3, 4, 5, 6 } упорядочено отношением . Тогда его диаграмма выглядит так, как показано на рисунке 8. Такая диаграмма характерна для линейно упорядоченных множеств.
2) M = 2{ a, b, c } = { , { a }, { b }, { c }, { a, b }, { a, c }, { b, c }, { a, b, c }} упорядочено отношением включения – « ». Тогда его диаграмма выглядит как на рисунке 9.
3 ) M ={ 1, 3, 5, 7, 15, 21, 35, 105 } упорядочено отношением P={ (x, y) : y делится на x }. Его диаграмма Хассе изображена на рисунке 10 и совпадает с предыдущей диаграммой с точностью до обозначения элементов. Между элементами этих множеств можно установить биективное отображение, сохраняющее имеющуюся упорядоченность элементов. Говорят, что такие множества изоморфны (подобны) между собой относительно заданных на них отношений порядка.
-
Содержание
- Часть I
- Введение в теорию множеств
- Понятие «множества»
- Способы задания множества
- Операции над множествами
- Свойства множественных операций
- Декартово (прямое) произведение множеств
- Некоторые свойства декартова произведения
- Соответствия между множествами
- Композиция двух соответствий
- Отображения и функции
- Операции над образами и прообразами отображений и их свойства
- Равномощность и мощность множеств
- Бинарные отношения
- Отношение эквивалентности
- Отношение упорядоченности
- Диаграммы Хассе
- Алгебраические действия общего типа
- Основные понятия
- Способы задания действий
- Свойства действий (операций)
- Простейшие алгебраические системы
- Подгруппы
- Конечные группы
- Циклические подгруппы
- Кольца, тела и поля
- Введение в теорию графов
- История и применение
- Основные определения теории графов
- Способы задания графов
- Теоремы о степенях вершин и изоморфизм графов
- Подграфы
- Операции над графами
- Маршруты, пути и циклы в графах
- Некоторые свойства маршрутов, путей и циклов
- Связность и компоненты графа
- Циклический и коциклический ранг графа
- Фундаментальные циклы и разрезы
- Специальные графы
- Эйлеровы графы
- Гамильтоновы графы
- Планарные графы
- Задачи и упражнения
- Список литературы
- Часть I
- 400131, Волгоград, просп. Им. В.И.Ленина, 28
- 400131, Волгоград, ул. Советская, 35