19) Значение многочлена. Корень многочлена. Теорема Безу и её важнейшее следствие.
Корень многочлена — корень уравнение, которое получится если многочлен приравнять к нулю.
Остаток от деления многочлена P(x) на двучлен (x-c) равен значению многочлена при x=c.
Докозательство. P(x) = (x-c) * S(x) +R(x)
P(c) = (c-c)*S(c) +R R = P(c)
Следствие. Если число С является корнем многочлена, то этот многочлен без остатка делится на (x-c)
Схема Горнера
Схе́ма Го́рнера (или правило Горнера, метод Горнера) — алгоритм вычисления значения многочлена, записанного в виде суммы мономов (одночленов), при заданном значении переменной. Метод Горнера позволяет найти корнимногочлена[1], а также вычислить производные полинома в заданной точке. Схема Горнера также является простым алгоритмом для деления многочлена на бином вида x − c. Метод назван в честь Уильяма Джорджа Горнера (англ.).
Описание алгоритма
Задан многочлен P(x):
.
Пусть требуется вычислить значение данного многочлена при фиксированном значении x = x0. Представим многочлен P(x) в следующем виде:
.
Определим следующую последовательность:
…
…
Искомое значение P(x0) = b0. Покажем, что это так.
В полученную форму записи P(x) подставим x = x0 и будем вычислять значение выражения, начиная со внутренних скобок. Для этого будем заменять подвыражения через bi:
- 1) Определение предела функции в точке. Предел суммы, произведения, частного двух функций.
- 2) Определение производной, её геометрический и физический смысл. Определение касательной к графику функции. Вывод уравнения касательной к графику функции.
- 3) Теорема о непрерывности дифференцируемой функции.
- 4) Правила Дифференцирования.
- Понятие сложной функции. Правило вычисления производной сложной функции.
- 7) Определение монотонной функции. Достаточное условие монотонности функции на промежутке .
- 8) Экстремум функции
- Достаточное условие экстремума функции.
- 10) Теорема Вейерштрасса
- 11) Асимптоты (вертикальные, наклонные)графика функции, вывод правила их нахождения.
- 12) Определение комплексных чисел.
- 13) Операции над комплексными числами в алгебраической форме и их свойства.
- 14) Геометрическая интерпретация комплексного числа
- 16) Определение комплексного корня n-й степени из комплексного числа
- Многочлены от одной переменной. Степень многочлена. Равные многочлены. Основные свойства операций сложения и умножения многочленов.
- Деление многочленов с остатком.
- 19) Значение многочлена. Корень многочлена. Теорема Безу и её важнейшее следствие.
- 21.Рациональные корни многочленов с целыми коэффициентами.
- 22.Обобщенная теорема Виета для многочленов n-ой степени
- 23.Векторы в пространстве. Сумма и разность векторов, умножение вектора на число. Коллинеарные векторы. Компланарные векторы. Угол между векторами.
- 26.Определение скалярного произведения двух векторов и его свойства.
- 27.Различные виды уравнения плоскости
- 28.Определение угла между плоскостями. Формула вычисления кос угла между плоскостями с выводом
- 29.Различные виды уравнений прямой в пространстве
- 30.Взаимное расположение прямой и плоскости
- 31.Вычисление координат точки пересечения прямой с плоскостью
- 32.Определение расстояния от точки до плоскости
- 33.Уравнение сферы…