29.Различные виды уравнений прямой в пространстве
1)векторно -параметрическое: r=ro+at 2)параметрические: x=xo+a1t y=yo+a2t z=zo+a3t 3)каноническое (x-xo)/a1=(y-yo)/a2=(z-zo)/a3 4)уравнение прямой, проходящей через 2 указанные точки: (x-x1)\(x2-x1)=(y-y1)/(y2-y1)=(z-z1)/(z2-z1) 5)прямая как пересечение двух плоскостей: A1x+B1y+C1z+D1=0 A2x+B2y+C2z+D2=0
Вычисление величины угла между прямыми
Пусть прямые и заданы общими уравнениями
и |
Обозначим через φ величину угла между прямыми и (напомним, что угол между прямыми измеряется от 0° до 90°), а через ψ – угол между нормальными векторами и этих прямых. Если ψ ≤ 90°, то φ = ψ. Если же ψ > 90°, то φ = 180° – ψ. В обоих случаях верно равенство Из теоремы 11.10 следует, что
|
и, следовательно,
|
Записав через координаты, получим
|
Определение угла между прямыми
Угол между двумя прямыми равен углу между их направляющими векторами. Таким образом, если вам удастся найти координаты направляющих векторов a = (x1; y1; z1)и b = (x2; y2; z2), то сможете найти угол. Точнее, косинус угла по формуле:
- 1) Определение предела функции в точке. Предел суммы, произведения, частного двух функций.
- 2) Определение производной, её геометрический и физический смысл. Определение касательной к графику функции. Вывод уравнения касательной к графику функции.
- 3) Теорема о непрерывности дифференцируемой функции.
- 4) Правила Дифференцирования.
- Понятие сложной функции. Правило вычисления производной сложной функции.
- 7) Определение монотонной функции. Достаточное условие монотонности функции на промежутке .
- 8) Экстремум функции
- Достаточное условие экстремума функции.
- 10) Теорема Вейерштрасса
- 11) Асимптоты (вертикальные, наклонные)графика функции, вывод правила их нахождения.
- 12) Определение комплексных чисел.
- 13) Операции над комплексными числами в алгебраической форме и их свойства.
- 14) Геометрическая интерпретация комплексного числа
- 16) Определение комплексного корня n-й степени из комплексного числа
- Многочлены от одной переменной. Степень многочлена. Равные многочлены. Основные свойства операций сложения и умножения многочленов.
- Деление многочленов с остатком.
- 19) Значение многочлена. Корень многочлена. Теорема Безу и её важнейшее следствие.
- 21.Рациональные корни многочленов с целыми коэффициентами.
- 22.Обобщенная теорема Виета для многочленов n-ой степени
- 23.Векторы в пространстве. Сумма и разность векторов, умножение вектора на число. Коллинеарные векторы. Компланарные векторы. Угол между векторами.
- 26.Определение скалярного произведения двух векторов и его свойства.
- 27.Различные виды уравнения плоскости
- 28.Определение угла между плоскостями. Формула вычисления кос угла между плоскостями с выводом
- 29.Различные виды уравнений прямой в пространстве
- 30.Взаимное расположение прямой и плоскости
- 31.Вычисление координат точки пересечения прямой с плоскостью
- 32.Определение расстояния от точки до плоскости
- 33.Уравнение сферы…