11) Асимптоты (вертикальные, наклонные)графика функции, вывод правила их нахождения.
Вертикальная
Вертикальная асимптота — прямая вида при условии существования предела .
Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:
Замечание: обратите внимание на знаки бесконечностей в этих равенствах.
Наклонная
Наклонная асимптота — прямая вида при условии существования пределов
1.
2.
Наклонная пример.
Замечание: функция может иметь не более двух наклонных(горизонтальных) асимптот!
Замечание: Если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при (или ) не существует!
Порядок нахождения асимптот
Нахождение вертикальных асимптот.
Нахождение двух пределов
Нахождение двух пределов :
если в п. 2.), то , и предел ищется по формуле горизонтальной асимптоты, .
- 1) Определение предела функции в точке. Предел суммы, произведения, частного двух функций.
- 2) Определение производной, её геометрический и физический смысл. Определение касательной к графику функции. Вывод уравнения касательной к графику функции.
- 3) Теорема о непрерывности дифференцируемой функции.
- 4) Правила Дифференцирования.
- Понятие сложной функции. Правило вычисления производной сложной функции.
- 7) Определение монотонной функции. Достаточное условие монотонности функции на промежутке .
- 8) Экстремум функции
- Достаточное условие экстремума функции.
- 10) Теорема Вейерштрасса
- 11) Асимптоты (вертикальные, наклонные)графика функции, вывод правила их нахождения.
- 12) Определение комплексных чисел.
- 13) Операции над комплексными числами в алгебраической форме и их свойства.
- 14) Геометрическая интерпретация комплексного числа
- 16) Определение комплексного корня n-й степени из комплексного числа
- Многочлены от одной переменной. Степень многочлена. Равные многочлены. Основные свойства операций сложения и умножения многочленов.
- Деление многочленов с остатком.
- 19) Значение многочлена. Корень многочлена. Теорема Безу и её важнейшее следствие.
- 21.Рациональные корни многочленов с целыми коэффициентами.
- 22.Обобщенная теорема Виета для многочленов n-ой степени
- 23.Векторы в пространстве. Сумма и разность векторов, умножение вектора на число. Коллинеарные векторы. Компланарные векторы. Угол между векторами.
- 26.Определение скалярного произведения двух векторов и его свойства.
- 27.Различные виды уравнения плоскости
- 28.Определение угла между плоскостями. Формула вычисления кос угла между плоскостями с выводом
- 29.Различные виды уравнений прямой в пространстве
- 30.Взаимное расположение прямой и плоскости
- 31.Вычисление координат точки пересечения прямой с плоскостью
- 32.Определение расстояния от точки до плоскости
- 33.Уравнение сферы…