30.Взаимное расположение прямой и плоскости
Если прямая, пересекающая плоскость, перпендикулярна двум прямым, лежащим в этой плоскости и проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.
Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
Если две прямые перпендикулярны одной и той же плоскости, то они параллельны.
Если прямая, лежащая в плоскости, перпендикулярна проекции наклонной, то она перпердикулярна и самой наклонной.
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, расположенной в этой плоскости, то она параллельна этой плоскости.
Если прямая параллельна плоскости, то она параллельна некоторой прямой на этой плоскости.
Если прямая и плоскость перпендикулярны одной и той же прямой, то они параллельны.
Все точки прямой, параллельной плоскости, одинаково удалены от этой плоскости.
1. Если прямые и заданы общими уравнениями
и ,
тогда угол между ними равен углу между их нормалями, то есть между векторами и
Следовательно,
.
Условия параллельности и перпендикулярности прямых тоже сводятся к условиям параллельности и перпендикулярности нормалей:
– условие параллельности прямых и ;
– условие перпендикулярности прямых и .
2. Если прямые и заданы каноническими уравнениями
и ,
где и направляющие векторы прямых и , то по аналогии с пунктом 1 получим:
,
– условие параллельности прямых и
– условие перпендикулярности прямых и .
Углом между прямой и плоскостью называется любой угол между прямой и ее проекцией на эту плоскость.
- 1) Определение предела функции в точке. Предел суммы, произведения, частного двух функций.
- 2) Определение производной, её геометрический и физический смысл. Определение касательной к графику функции. Вывод уравнения касательной к графику функции.
- 3) Теорема о непрерывности дифференцируемой функции.
- 4) Правила Дифференцирования.
- Понятие сложной функции. Правило вычисления производной сложной функции.
- 7) Определение монотонной функции. Достаточное условие монотонности функции на промежутке .
- 8) Экстремум функции
- Достаточное условие экстремума функции.
- 10) Теорема Вейерштрасса
- 11) Асимптоты (вертикальные, наклонные)графика функции, вывод правила их нахождения.
- 12) Определение комплексных чисел.
- 13) Операции над комплексными числами в алгебраической форме и их свойства.
- 14) Геометрическая интерпретация комплексного числа
- 16) Определение комплексного корня n-й степени из комплексного числа
- Многочлены от одной переменной. Степень многочлена. Равные многочлены. Основные свойства операций сложения и умножения многочленов.
- Деление многочленов с остатком.
- 19) Значение многочлена. Корень многочлена. Теорема Безу и её важнейшее следствие.
- 21.Рациональные корни многочленов с целыми коэффициентами.
- 22.Обобщенная теорема Виета для многочленов n-ой степени
- 23.Векторы в пространстве. Сумма и разность векторов, умножение вектора на число. Коллинеарные векторы. Компланарные векторы. Угол между векторами.
- 26.Определение скалярного произведения двух векторов и его свойства.
- 27.Различные виды уравнения плоскости
- 28.Определение угла между плоскостями. Формула вычисления кос угла между плоскостями с выводом
- 29.Различные виды уравнений прямой в пространстве
- 30.Взаимное расположение прямой и плоскости
- 31.Вычисление координат точки пересечения прямой с плоскостью
- 32.Определение расстояния от точки до плоскости
- 33.Уравнение сферы…