logo search
ответы к экзамену

17. Фундаментальная система решений

Решения однородной системы обладают следующими свойствами, если вектор α =(α1, α2, …,αn ) является решением системы (1.53), то и для любого числа k вектор kα =(kα1 kα2, ..., kαn)также будет решением этой системы. Если решением системы (1.53) является также и вектор γ =(γ1, γ2, …, γn), то сумма α+γ также будет решением

этой системы. Отсюда следует, что любая линейная комбинация решений однородной системы также является решением этой системы.

Как мы знаем из 1.1.4, всякая система n-мерных векторов, состоящая более чем из n векторов, является линейно зависимой. Таким образом, из множества векторов-решений однородной системы (1.53) можно

выбрать базис, т. е. любой вектор-решение данной системы будет линейной комбинацией векторов этого базиса. Любой такой базис называется фундаментальной системой решений (ФСР) однородной системы линейных уравнений. Справедлива следующая теорема.

Теорема 1.8. Если ранг r системы однородных уравнений (1.53) мень-ше числа неизвестных п, то всякая ее фундаментальная система решений состоит из (n - r) решений.

Укажем теперь способ нахождения фундаментальной системы решений. Пусть система однородных уравнений (1.53) имеет ранг г < n. Тогда, как следует из правила Крамера, базисные неизвестные этой системы Х1, х2, ..., хг линейно выражаются через свободные переменные

xr+1, …, xn:

x1=β11x1+β12x2+...+β1n-rxn

…..............................................

xr=βr1xr+1 + βr2xr+2 + … + βrn-rxn

Выделим частные решения однородной системы (1.53) по следующему принципу. Для нахождения первого вектора-решения х, примем значения свободных переменных xr+1=1, xr+2=xr+3=xn=0. Затем

находим второе решение х2: принимаем х,.+ 2 = 1, а остальные г - 1 свободные переменные примем равными нулю. Иными словами, мы последовательно присваиваем каждой свободной переменной единичное

значение, считая остальные нулями. Таким образом, фундаментальная система решений (ФСР) в векторной форме с учетом первых г базисных переменных (1.54) имеет вид

x1 = (β11, β21, …, βr1, 1, 0, ...0) ,

х2 = (β12, β22, …, βr2, 0, 1, 0, …, 0 ),

…...........................................................................................

xn-1=(β1n-r, β2n-r, …, βr n-r, 0, …, 0, 1)

(1.55)

Фундаментальная система решений (1.55) является одним из фундаментальных наборов решений однородной системы (1.53).