21. Ортогонализация системы векторов.
Рассмотрим базис пространства R", в котором каждый вектор ортогонален остальным векторам базиса:
ē1, ē2, ..., ēn; ējēi=0, i≠j; i, j = 1,2,...,n.
Ортогональные базисы известны и хорошо представимы на плоскости и в пространстве. Базисы такого вида удобны прежде всего тем, что координаты разложения произвольного вектора определяются по весьма простой процедуре, без применения трудоемких вычислений.1.2. Матрицы 19
Действительно, пусть требуется найти разложение произвольного вектора b в ортогональном базисе (1.15). Составим разложение этого вектора с неизвестными пока координатами разложения в данном базисе:
_
b=a1ē1+a2ē+...+anēn
Умножим обе части этого равенства, представляющие собой векторы, на вектор е,. В силу свойств 2 и 3 скалярного произведения векторов имеем
_
bē, = α1(ē1ēi)+α2(ē2ēi)+...+αi(ēiēi)+αn(ēnēi)
Однако в силу взаимной ортогональности векторов базиса (1.15) все скалярные произведения векторов базиса, за исключением г'-го, равны нулю, т. е. коэффициенты а, определяется по формуле
_ _
α1=(bēi)/(ēiēi)=(bēi)/|ēi|^2; i=1, 2, ..., n
Отметим особо частный случай ортогонального базиса, когда все векторы в (1.15) имеют единичную длину (|ё,. | =1) или нормированы по своей длине. В таком случае базис называют ортопормированным и координаты разложения (1.17) имеют наиболее простой вид:
_
α1= bēi, i=1, 2, ..., n
- 1. Понитие n-мерного вектора, основные определения.
- 2. Операции над векторами
- 3.Линейная зависимость векторов
- 4. Базис и ранг системы векторов.
- 5. Матрица. Основные понятия и определения.
- 6. Линейные операции над матрицами
- 7.Операции над определителями
- 9. Понятие обратной матрицы
- 10. Ранг матрицы и системы векторов
- 11.Системы линейных алгебраических уравнений
- 12. Критерий совместимости слау (теорема Кронекера-Капелли)
- Теорема
- 15.Однородные системы линейных уравнений
- 16.Необходимое и достаточное условие существования нетривиального решения системы nxm:
- 17. Фундаментальная система решений
- 18.Общее решение системы уравнений в векторной форме:
- 19.Собственные значения и собственные векторы матрицы:
- 20. Ортогональная и ортонормированная система векторов.
- 21. Ортогонализация системы векторов.
- 22. Собственные векторы симметричной матрицы. Построение ортонормированного базиса.
- 32. Свойства взаимно-двойственных задач: