logo search
Лекции_по_ДМ

Основные понятия

Пусть А – непустое множество и n 1. Тогда nарным действием (или n –местной операцией) на множестве А называется отображение некоторого подмножества декартова произведения в А.

Обозначение: φⁿ: Аn  А.

Могут рассматриваться также нуль–арные действия (операции), которые по определению отмечают некоторый элемент из А. При n = 1 операция называется унарной, например, а–1. При n = 2 – бинарной, например a+b. При n = 3 – тернарной, например, нахождение центра тяжести векторов на плоскости f(x,y,z)=(x+y+z)/3. И т.д.. Чаще всего рассматриваются бинарные операции, для которых по определению некоторым парам элементов xyA (или каждой паре элементов в частном случае), взятых в определенном порядке, сопоставляется третий элемент zA, называемый результатом выполнения операции над операндами x и y.

Отметим, что действие всегда задается на определенном множестве, поэтому в этом смысле сложение на множестве натуральных чисел и сложение на множестве рациональных чисел – разные действия, т.к. отличаются множествами, на которых они заданы.

На одном и том же множестве может быть задано несколько действий.

Множество всех действий (операций), заданных на множестве А, называется сигнатурой А, т.е. Ω(А)= {φ˚, φ¹, φ²,…} – сигнатура А. Множество А вместе с заданной на нем сигнатурой, возможно пустой, называется универсальной алгеброй или алгебраической системой и обозначается (А, Ω).

Для обозначения бинарного действия могут употребляться следующие формы записи: z = φ(xy) или z = xy, если zA – результат некоторого действия над x и yA, а «» – обозначение действия (традиционно для обозначения действия используются знаки: +, –, , :, /, *, ,  и т.д., при этом, используемое обозначение не обязательно показывает совпадение действия с известным элементарным действием). Запись вида x*y или xy, или xy называется мультипликативной, а z = x + yаддитивной. При этом используется обычная терминология: операнды называются сомножителями (слагаемыми), а результат – произведением (суммой), хотя само действие может не иметь ничего общего с обычным умножением или сложением чисел.