logo search
30-40_3

15. Определенный интеграл

 Пусть функция задана на отрезкеи имеет на нем первообразную. Разностьназываютопределенным интегралом функции по отрезкуи обозначают. Итак,

Разность записывают в виде, тогда. Числаиназываютпределами интегрирования.

Например, одна из первообразных для функции. Поэтому

16. Если с — постоянное число и функция ƒ(х) интегрируема на [a;b], то

т. е. постоянный множитель с можно выносить за знак определенного интеграла.

▼Составим интегральную сумму для функции с • ƒ(х). Имеем:

Тогда Отсюда вытекает, что функцияс • ƒ(х) интегрируема на [а; b] и справедлива формула (38.1).▲

2. Если функции ƒ1(х) и ƒ2(х) интегрируемы на [а;b], тогда интегрируема на [а; b] их сумма u

т. е. интеграл от суммы равен сумме интегралов.

▼▲

Свойство 2 распространяется на сумму любого конечного числа слагаемых.

3.

Это свойство можно принять по определению. Это свойство также подтверждается формулой Ньютона-Лейбница.

4. Если функция ƒ(х) интегрируема на [а; b] и а < с < b, то

т. е. интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности).

При разбиении отрезка [а;b] на части включим точку с в число точек деления (это можно сделать ввиду независимости предела интегральной суммы от способа разбиения отрезка [а; b] на части). Если с = хm, то интегральную сумму можно разбить на две суммы:

Каждая из написанных сумм является интегральной соответственно для отрезков [а; b], [а; с] и [с; b]. Переходя к пределу в последнем равенстве при n → ∞ (λ → 0), получим равенство (38.3).

Свойство 4 справедливо при любом расположении точек а, b, с (считаем, что функция ƒ (х) интегрируема на большем из получающихся отрезков).

Так, например, если а < b < с, то

Отсюда

(использованы свойства 4 и 3).

5. «Теорема о среднем». Если функция ƒ(х) непрерывна на отрезке [а; b], то существует тонка с є [а; b] такая, что

▼По формуле Ньютона-Лейбница имеем

где F'(x) = ƒ(х). Применяя к разности F(b)-F(a) теорему Лагранжа (теорему о конечном приращении функции), получим

F(b)-F(a) = F'(c)•(b-а) = ƒ(с)•(b-а).▲

Свойство 5 («теорема о среднем») при ƒ (х) ≥ 0 имеет простой геометрический смысл: значение определенного интеграла равно, при некотором с є (а; b), площади прямоугольника с высотой ƒ (с) и основанием b- а  (см. рис. 170). Число

называется средним значением функции ƒ(х) на отрезке [а; b].

6. Если функция ƒ (х) сохраняет знак на отрезке [а; b], где а < b, то интегралимеет тот же знак, что и функция. Так, если ƒ(х)≥0 на отрезке [а; b], то

▼По «теореме о среднем» (свойство 5)

где с є [а; b]. А так как ƒ(х) ≥ 0 для всех х Î [а; b], то и

ƒ(с)≥0, b-а>0.

Поэтому ƒ(с)•(b-а) ≥ 0, т. е.▲

7. Неравенство между непрерывными функциями на отрезке [а; b], (a<b) можно интегрировать. Так, если ƒ1(x)≤ƒ2(х) при х є [а;b], то

▼Так как ƒ2(х)-ƒ1(x)≥0, то при а < b, согласно свойству 6, имеем

Или, согласно свойству 2,

Отметим,что дифференцировать неравенства нельзя.

8. Оценка интеграла. Если m и М — соответственно наименьшее и наибольшее значения функции у = ƒ (х) на отрезке [а; b], (а < b), то

▼Так как для любого х є [а;b] имеем m≤ƒ(х)≤М, то, согласно свойству 7, имеем

Применяяк крайним интегралам свойство 5, получаем

Если ƒ(х)≥0, то свойство 8 иллюстрирует ся геометрически: площадь криволинейной трапеции заключена между площадями прямоугольников, основание которых есть [a;b], а высоты равны m и М (см. рис. 171).  

9. Модуль определенного интеграла не превосходит интеграла от модуля подынтегральной функции:

▼Применяя свойство 7 к очевидным неравенствам -|ƒ(х)|≤ƒ(х)≤|ƒ(х)|, получаем

Отсюда следует, что

10. Производная определенного интеграла по переменному верхнему пределу равна подынтегральной функции, в которой переменная интегрирования заменена этим пределом, т. е.

17.

Вычисление площади фигуры является одной из наиболее не простых проблем теории площадей. В школьном курсе геометрии мы научились находить площади основных геометрических фигур, например, круга, треугольника, ромба и т.п. Однако намного чаще приходится сталкиваться с вычислением площадей более сложных фигур. При решении подобных задач приходится прибегать к интегральному исчислению.

В этой статье мы рассмотрим задачу о вычислении площади криволинейной трапеции, причем подойдем к ней в геометрическом смысле. Это позволит нам выяснить прямую связь между определенным интегралом и площадью криволинейной трапеции.

Пусть функция y = f(x) непрерывна на отрезке [a; b] и не меняет знак на нем (то есть, неотрицательная или неположительная). Фигуру G, ограниченную линиями y = f(x), y = 0, x = a и x = b, называют криволинейной трапецией. Обозначим ее площадь S(G).

Подойдем к задаче вычисления площади криволинейной трапеции следующим образом. В разделе квадрируемые фигурымы выяснили, что криволинейная трапеция является квадрируемой фигурой. Если разбить отрезок[a; b] на n частей точкамии обозначить, а точкивыбирать так, чтобыпри, то фигуры, соответствующие нижней и верхней суммам Дарбу, можно считать входящейP и объемлющей Q многоугольными фигурами для G.

Таким образом, и при увеличении количества точек разбиенияn, мы придем к неравенству , где- сколь угодно малое положительное число, аs и S – нижняя и верхняя суммы Дарбу для данного разбиения отрезка [a; b]. В другой записи . Следовательно, обратившись кпонятию определенного интеграла Дарбу, получаем.

Последнее равенство означает, что определенный интеграл для непрерывной и неотрицательной функцииy = f(x) представляет собой в геометрическом смысле площадь соответствующей криволинейной трапеции. В этом и состоит геометрический смысл определенного интеграла.

То есть, вычислив определенный интеграл , мы найдем площадь фигуры, ограниченной линиямиy = f(x), y = 0, x = a и x = b.

Замечание.

Если функция y = f(x) неположительная на отрезке [a; b], то площадь криволинейной трапеции может быть найдена как .

Пример.

Вычислить площадь фигуры, ограниченной линиями .

Решение.

Построим фигуру на плоскости: прямая y = 0 совпадает с осью абсцисс, прямые x = -2и x = 3 параллельны оси ординат, а кривая может быть построена с помощьюгеометрических преобразований графика функции.

Таким образом, нам требуется найти площадь криволинейной трапеции. Геометрический смысл определенного интеграла нам указывает на то, что искомая площадь выражается определенным интегралом. Следовательно, . Этот определенный интеграл можно вычислить поформуле Ньютона-Лейбница: