logo
30-40_3

10. Интегрирование тригонометрических функций.

Множество задач сводится к нахождению интегралов трансцендентных функций, содержащих тригонометрические функции. В данной статье сгруппируем наиболее часто встречающиеся виды подынтегральных функций и на примерах рассмотрим методы их интегрирования.

Из таблицы первообразных сразу заметим, что и.

Метод подведения под знак дифференциалапозволяет вычислить неопределенные интегралы функций тангенса и котангенса:

К началу страницы

Разберем первый случай, второй абсолютно аналогичен.

Воспользуемся методом подстановки:

Пришли к задаче интегрирования иррациональной функции. Здесь нам также поможет метод подстановки:

Осталось провести обратную замену иt = sinx

К началу страницы

Подробно о принципах их нахождении можете ознакомиться в разделеинтегрирование с использованием рекуррентных формул. Если изучите вывод этих формул, то без особого труда сможете брать интегралы вида, гдеm и n – натуральные числа.

К началу страницы

К началу страницы

Здесь на помощь приходят основные формулы тригонометрии. Так что выписывайте их на отдельный листочек и держите перед глазами.

Пример.

Найти множество первообразных функции .

Решение.

Формулы понижения степени дают и.

Поэтому 

Знаменатель представляет собой формулу синуса суммы, следовательно, 

Приходим к сумме трех интегралов. 

К началу страницы

Выпишем тригонометрические формулы, выражающие синус, косинус, тангенс через тангенс половинного аргумента: 

При интегрировании нам также понадобится выражение дифференциала dx через тангенс половинного угла.

Так как , то

То есть, , где.

Пример.

Найти неопределенный интеграл .

Решение.

Применим стандартную тригонометрическую подстановку: 

Таким образом, .

Разложение на простейшие дробиподынтегральной функции приводит нас к сумме двух интегралов:

Осталось провести обратную замену :

11. Рекуррентные формулы – это формулы, выражающие n-ый член последовательности через предыдущие члены. При нахождении интегралов они не редко используются.

Мы не ставим целью перечислить все рекуррентные формулы, а хотим дать принцип их получения. Вывод этих формул основан на преобразовании подынтегральной функции и применении метода интегрирования по частям.

К примеру, неопределенный интеграл можно взять, используя рекуррентную формулу.

Вывод формулы :

Используя формулы тригонометрии, можно записать:

Полученный интеграл найдем методом интегрирования по частям. В качестве функции u(x)возьмем cosx, следовательно, .

Поэтому,

Возвращаемся к исходному интегралу:

То есть, 

Что и требовалось показать.

Аналогично выводятся следующие рекуррентные формулы:

  1. Для нахождения интегралов вида используется рекуррентная формула,n – натуральное число.

  2. Для нахождения интегралов вида используется рекуррентная формула.

  3. Для нахождения интегралов вида используется рекуррентная формула.

  4. Для нахождения интегралов вида используется рекуррентная формула.

Пример.

Найти неопределенный интеграл .

Решение.

Используем рекуррентную формулу из четвертого пункта (в нашем примере n = 3):

Так как из таблицы первообразных имеем , то

Yandex.RTB R-A-252273-3