23. Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
Пример 1
Вычислить объем тела, полученного вращением фигуры, ограниченной линиями ,вокруг оси.
Решение: Как и в задаче на нахождение площади, решение начинается с чертежа плоской фигуры. То есть, на плоскости необходимо построить фигуру, ограниченную линиями,, при этом не забываем, что уравнениезадаёт ось. Как рациональнее и быстрее выполнить чертёж, можно узнать на страницахГрафики и свойства Элементарных функцийи Определенный интеграл. Как вычислить площадь фигуры. Это китайское напоминание, и на данном моменте я больше не останавливаюсь.
Чертёж здесь довольно прост:
Искомая плоская фигура заштрихована синим цветом, именно она и вращается вокруг оси В результате вращения получается такая немного яйцевидная летающая тарелка, которая симметрична относительно оси. На самом деле у тела есть математическое название, но по справочнику что-то лень уточнять, поэтому едем дальше.
Как вычислить объем тела вращения?
Объем тела вращения можно вычислить по формуле:
В формуле перед интегралом обязательно присутствует число . Так повелось – всё, что в жизни крутится, связано с этой константой.
Как расставить пределы интегрирования «а» и «бэ», думаю, легко догадаться из выполненного чертежа.
Функция … что это за функция? Давайте посмотрим на чертеж. Плоская фигура ограничена графиком параболысверху. Это и есть та функция, которая подразумевается в формуле.
В практических заданиях плоская фигура иногда может располагаться и ниже оси . Это ничего не меняет – подынтегральная функция в формуле возводится в квадрат:, таким образоминтеграл всегда неотрицателен, что весьма логично.
Вычислим объем тела вращения, используя данную формулу:
Как я уже отмечал, интеграл почти всегда получается простой, главное, быть внимательным.
Ответ:
В ответе нужно обязательно указать размерность – кубические единицы . То есть, в нашем теле вращения примерно 3,35 «кубиков». Почему именно кубическиеединицы? Потому что наиболее универсальная формулировка. Могут быть кубические сантиметры, могут быть кубические метры, могут быть кубические километры и т.д., это уж, сколько зеленых человечков ваше воображение поместит в летающую тарелку.
Yandex.RTB R-A-252273-3- 1. Определение первообразной.
- 2. Основные свойства неопределенного интеграла
- 6. Понятия о рациональных функциях
- 8. Интегрирование простейших дробей.
- 9. Интегрирование простейших дробей четвертого типа
- 10. Интегрирование тригонометрических функций.
- 12. Интегрирование иррациональных функций.
- 13. Дробно-линейная подстановка
- 14. Тригонометрическая подстановка
- 15. Определенный интеграл
- 18. Формула Ньютона-Лейбница.
- 19. Несобственные интегралы первого рода
- 20. Несобственные интегралы второго рода
- 22. Вычисление длины дуги плоской кривой
- 23. Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- 24. Определение двойного интеграла