Операции над множествами
О бъединением двух множеств A и B (или теоретико-множественной суммой) называется множество, состоящее из всех элементов, являющихся элементами хотя бы одного из множеств A или B. Таким образом, .
Объединением системы множеств называется множество .
Для графического изображения операции объединения множеств используются диаграммы Эйлера-Венна, где множества представлены как замкнутые области, а результат операции показан заштрихованной частью (см. рис.1).
Пересечением двух множеств A и B (или теоретико-множественным произведением) называется множество элементов, принадлежащих одновременно и A, и B. Таким образом, и .
Диаграмма Эйлера-Венна для пересечения двух множеств показана на рис.2.
Пересечением системы множеств называется множество .
Множества называются дизъюнктными (или непересекающимися), если . Аналогично для системы множеств: множества дизъюнктны, если любые два из них дизъюнктны.
Относительным дополнением множества B до множества A (или теоретико-множественной разностью) называется множество тех элементов A, которые не являются элементами B, таким образом, A \ B и . Диаграмма на рис.3.
Очевидно, что если , то . И в общем случае произвольных множеств A и B имеет место равенство .
Абсолютным дополнением множества A называется множество всех элементов, не принадлежащих A, таким образом, или ℧ \ A, где ℧ –универсальное множество. Диаграмма на рис.4.
Симметрической разностью двух множеств A и B называется объединение двух разностей A \ B и B \ A, т.е. A B= (A \ B)(B \ A). Диаграмма на рис.5.
Примеры:
1) Пусть , . Тогда ; ; ; ; .
2) Пусть - отрезок, - полуинтервал. Тогда ; ; ; ; ; ; .
3) Пусть А – множество прямоугольников, В – множество всех ромбов на плоскости. Тогда ={все прямоугольники и ромбы}; ={все квадраты}; А \ В={прямоугольники, за исключением квадратов}; В \ А={ромбы без квадратов}.
4) Пусть .
Рассмотрим систему множеств тогда ; .
5) Пусть .
Тогда ℝ2, .
-
Содержание
- Часть I
- Введение в теорию множеств
- Понятие «множества»
- Способы задания множества
- Операции над множествами
- Свойства множественных операций
- Декартово (прямое) произведение множеств
- Некоторые свойства декартова произведения
- Соответствия между множествами
- Композиция двух соответствий
- Отображения и функции
- Операции над образами и прообразами отображений и их свойства
- Равномощность и мощность множеств
- Бинарные отношения
- Отношение эквивалентности
- Отношение упорядоченности
- Диаграммы Хассе
- Алгебраические действия общего типа
- Основные понятия
- Способы задания действий
- Свойства действий (операций)
- Простейшие алгебраические системы
- Подгруппы
- Конечные группы
- Циклические подгруппы
- Кольца, тела и поля
- Введение в теорию графов
- История и применение
- Основные определения теории графов
- Способы задания графов
- Теоремы о степенях вершин и изоморфизм графов
- Подграфы
- Операции над графами
- Маршруты, пути и циклы в графах
- Некоторые свойства маршрутов, путей и циклов
- Связность и компоненты графа
- Циклический и коциклический ранг графа
- Фундаментальные циклы и разрезы
- Специальные графы
- Эйлеровы графы
- Гамильтоновы графы
- Планарные графы
- Задачи и упражнения
- Список литературы
- Часть I
- 400131, Волгоград, просп. Им. В.И.Ленина, 28
- 400131, Волгоград, ул. Советская, 35